

St Bartholomew's Cemetery Expansion Planning Proposal Transport Impact Assessment

Client //Blacktown City CouncilOffice //NSWReference //N140040Date //22/06/18

St Bartholomew's Cemetery Expansion

Planning Proposal

Transport Impact Assessment

Issue: C 22/06/18

Client: Blacktown City Council Reference: N140040 GTA Consultants Office: NSW

Quality Record

Issue	Date	Description	Prepared By	Checked By	Approved By	Signed
A	19/06/18	Final	Mackenzie Brinums, Ingrid Bissaker, Siew Hwee Kong	Nicole Vukic	Nicole Vukic	Nicole Vukic
В	21/06/18	Updated final	Mackenzie Brinums, Ingrid Bissaker, Siew Hwee Kong	Nicole Vukic	Nicole Vukic	Nicole Vukic
С	21/06/18	Updated final based on Mackenzie Bri		Nicole Vukic	Nicole Vukic	N. Vuleic

© GTA Consultants (GTA Consultants (NSW) Pty Ltd) 2017 The information contained in this document is confidential and intended solely for the use of the client for the purpose for which it has been prepared and no representation is made or is to be implied as being made to any third party. Use or copying of this document in whole or in part without the written permission of GTA Consultants constitutes an infringement of copyright. The intellectual property contained in this document remains the property of GTA Consultants.

Melbourne | Sydney | Brisbane Canberra | Adelaide | Perth

Introduction

Purpose of this Report

This report provides an assessment of the anticipated transport implications of the proposed future use of the land as a cemetery and provides recommendations for the masterplan, detailed design and DA documentation, including consideration of the following:

- i existing traffic conditions surrounding the site
- ii parking requirements in terms of supply (quantum) and layout
- iii service vehicle requirements
- iv pedestrian and bicycle requirements
- v the traffic generating characteristics of the proposed land use
- vi suitability of the proposed access arrangements for the site
- vii the transport impact of the development proposal on the surrounding road network.

References

In preparing this report, reference has been made to the following:

- an inspection of the site and its surrounds on Sunday 9 December 2017 and Tuesday 11 December 2017
- Blacktown City Council Development Control Plan (DCP) 2015
- Blacktown City Council LEP 2015
- traffic surveys undertaken by TTM Group on Sunday 9 December 2017 and Tuesday 11 December 2017, as referenced in the context of this report
- other documents and data as referenced in this report.

Table of Contents

1.	Background	1
2.	Existing Conditions	2
	2.1 Land Use	2
	2.2 Access to the Site	3
	2.3 Road Network	3
3.	Future Conditions	4
	3.1 Land Uses	4
4.	Executive Summary	5
5.	Existing Operations	7
	5.1 Surrounding Key Intersections	7
	5.2 Traffic Volumes	8
	5.3 Intersection Operation	9
	5.4 Car Parking	12
	5.5 Public Transport	12
	5.6 Pedestrian Infrastructure	14
	5.7 Cycle Infrastructure	14
	5.8 Crash History	15
6.	Traffic Impact Assessment	17
	6.1 Vehicle Access	17
	6.2 The Prospect Highway Upgrade	17
	6.3 Traffic Generation	19
	6.4 Distribution and Assignment	21
	6.5 Traffic Impact	24
	6.6 Summary	26
	6.7 Construction Traffic Impact	26
7.	Parking and Vehicle Access	27
	7.1 Parking Requirements	27
	7.2 Car Parking Layout	28
	7.3 Vehicle Access Review	29
8.	Sustainable Transport Infrastructure	31
	8.1 Public Transport	31
	8.2 Bicycle and Walking Network	32
	8.3 Bicycle End of Trip Facilities	33
9.	Conclusion	34

Appendices

- A: Adjoining Roads
- B: Survey Results
- C: SIDRA INTERSECTION Results

Figures

Figure 2.1:	Subject site and its environs	2
Figure 5.1:	Site	7
Figure 5.2:	Surrounding key intersections	8
Figure 5.1:	Existing weekday AM/ PM and weekend noon peak hour traffic volumes	9
Figure 5.2:	Existing on-site parking	12
Figure 5.3:	Existing bus stop locations	13
Figure 5.4:	700 bus route	13
Figure 5.5:	800 and 812 bus routes	14
Figure 5.6:	Surrounding cycling network	15
Figure 5.7:	Crashes near the site in the last five years	16
Figure 6.1:	Vehicle accesses	17
Figure 6.2:	Prospect Highway upgrade - general arrangement	19
Figure 6.3:	Existing two-way traffic volumes of Liverpool Cemetery access	20
Figure 6.4:	Peak hour arrival and departure distribution of traffic	21
Figure 6.5:	Future weekday AM peak hour plus site generated traffic volumes	22
Figure 6.6:	Future weekday PM peak hour plus site generated traffic volumes	23
Figure 6.7:	Future weekend noon peak hour plus site generated traffic volumes	24
Figure 7.1:	Proposed minibus approach and departure routes	28
Figure 7.2:	Proposed access one	29
Figure 7.3:	Intersection layout sketch of an Urban Basic Right-turn treatment (BAR)	30
Figure 8.1:	Recommended new bus stop and associated proposed shared path and	
	crossing along Prospect Highway	31
Figure 8.2:	Proposed shared path and crossing	32
Figure A.1:	GWH (looking east from Tarlington Place)	2
Figure A.2:	GWH (looking west towards Tarlington Place)	2
Figure A.3:	Prospect Highway (looking south towards Ponds Road)	2
Figure A.4:	Prospect Highway (looking north towards Ponds Road)	3
Figure A.5:	Ponds Road (looking east from Prospect Highway)	3
Figure A.6:	Ponds Road (looking west towards Prospect Highway)	3
Figure A.7:	M4 (looking east from Prospect Highway)	4

Figure A.8:	M4 (looking west towards Prospect Highway)	4
Figure A.9:	Tarlington Place (from Ponds Road towards the cemetery)	4
Figure A.10:	St Bartholomew's Place (from Ponds Road towards the cemetery)	5

Tables

Table 3.1:	Area schedule	4
Table 5.1:	SIDRA Intersection level of service criteria	10
Table 5.2:	Existing operating conditions	10
Table 5.3:	Public transport provision	13
Table 6.1:	Similarities between Liverpool Cemetery and St Bartholomew's Cemetery	20
Table 6.2:	Future operating conditions (with cemetery expansion being operational o	and
	with the Prospect Highway upgrade)	25

1. Background

The existing St Bartholomew's Church and Cemetery is located on a 3.17-hectare lot of Ponds Road, Prospect. The cemetery comprises approximately 3,600 occupied graves. In January 2016, Blacktown City Council (Council) received approximately 6 hectares of land east of St Bartholomew's Church from the New South Wales (NSW) State Government under a Land Transfer Agreement. In addition, Council intends to acquire approximately 2 hectares of land east of the existing cemetery.

Further to this, Council is seeking to close St Bartholomew's Place (approximately 0.39 hectares), with the intention of including it in the expansion of the cemetery. This equates to a total of 11.56 hectares of land proposed to be used for the expanded cemetery.

A planning proposal (PP) is being prepared, which seeks to reactivate the existing church and cemetery on the 3.17-hectare land and to reclassify the Council-owned expansion lands from "community land" to "operational land" and to rezone the cemetery expansion lands from RE1 Public Recreation, RU4 Primary Production Small Lots and SP2 Classified Road, under the Blacktown Local Environment Plan (LEP) 2015 to SP1 Cemetery.

In addition to the existing church and cemetery, the expanded cemetery is likely to include ancillary facilities such as an office, café, flower shop and potentially chapel. They will most likely be in the vicinity of Tarlington Place. Details will be determined at the Development Application (DA) stage.

APP Corporation (APP) on behalf of Council has engaged GTA Consultants (GTA) to prepare a transport impact assessment for the St Bartholomew's Cemetery expansion, to support the PP.

2. Existing Conditions

2.1 Land Use

The site is located on land between the Great Western Highway (GWH) to the north and M4 Western Motorway (M4) to the south and is bounded by the Prospect Highway to the west. The existing cemetery has an area of approximately 3.17 hectares, with the newly acquired land adding a further 6 hectares. A further 2.39 hectares of land is also intended to be acquired, including 2 hectares from other land owners and 0.39 hectares from the closure of St Bartholomew's Place, bringing the total area for the proposed cemetery site to 11.56 hectares. This is an increase of 8.39 hectares to the existing cemetery.

The existing cemetery is zoned SP1 Cemetery under Blacktown LEP 2015. The proposed cemetery expansion land:

- Is predominantly zoned RE1 Public Recreation
- Includes land zoned RU4 Primary Production Small Lots (the site of the old Prospect Post Office)
- Includes land zoned SP2 Classified Road to the south of the existing cemetery.

The existing cemetery contains approximately 3,600 utilised graves. As the last church service was held on the site in 1967 and no new interment rights have been sold at the cemetery since 1972, the existing cemetery site does not regularly attract many visitors.

The cemetery expansion land has been largely vacant and unused since the former Prospect Village (along Tarlington Place) was disrupted and eventually vacated/ demolished following the realignment of the Great Western Highway in 1968 and the construction of the M4 in 1990.

The location of the site and its surrounding environs is shown in Figure 2.1.

Figure 2.1: Subject site and its environs

2.2 Access to the Site

Access to and from Tarlington Place can be achieved through the Great Western Highway in the eastbound and westbound directions. Eastbound access is gained via a right turn bay. Access points to the existing cemetery are from Ponds Road, Prospect.

2.3 Road Network

Adjoining Roads

Great Western Highway

The GWH is classified as a Roads and Maritime State Road and is aligned in an east-west direction to the site's north. It is a two-way road with 3 westbound lanes and 4 eastbound lanes near the site, set within a 32-metre carriageway with an approximately 9-metre central median. Being an arterial road, no parking is permitted. The GWH has a posted speed limit of 80 km/h.

Prospect Highway

The Prospect Highway is classified as a Roads and Maritime State Road and is aligned in a northsouth direction to the site's west. It is a two-way road with generally one lane in each direction, set within an approximately 7-metre carriageway. Kerbside parking is not permitted, and the road has a posted speed limit of 60 km/h. Ponds Road

Ponds Road is classified as a Roads and Maritime State Road and is aligned in an east-west direction along with the site's north-western boundary. It is a two-way road with 1 lane in each direction, set within an approximately 7-metre carriageway. Ponds Road functions as an exit-ramp to the GWH and connects with the Prospect Highway to the west. It also provides access to the existing cemetery and St Bartholomew's Church. Ponds Road has a posted speed limit of 60 km/h.

M4 Western Motorway

The M4 is classified as a Roads and Maritime State Road and is aligned in an east-west direction to the site's south. It is a two-way road with generally 3 lanes in each direction, set over an approximately 22-metre wide carriageway, including a central separation barrier. The M4 has a posted speed limit of 100 km/h in the vicinity of the site, with off and on-ramps provided to/ from the Prospect Highway.

Tarlington Place and St Bartholomew's Place

Tarlington Place and St Bartholomew's Place are classified as Local Roads and are internal roads located within the subject site. St Bartholomew's Place is an unsealed road, which runs along the eastern boundary of the existing cemetery while Tarlington Place is a sealed road and primarily functions as the access road to 23 Tarlington Place (the old Prospect Post Office).

Council is looking to close St Bartholomew's Place (0.39 hectares) and absorb it into the cemetery expansion lands. It could, however, still function as an access point and internal cemetery road.

Vehicle access to the site is proposed via the existing 2 driveways along Ponds Road (access 1 and access 2) and Tarlington Place (access 3). St Bartholomew's Place, whilst proposed to be closed, may also be used as an access point, depending on how the development is staged.

The internal road network will be determined at the Development Application stage. It is recommended that an internal link between the existing and expanded cemetery areas to be provided.

3. Future Conditions

3.1 Land Uses

The proposal seeks to rezone the 8.39 hectares of land to allow for the expansion of the existing St Bartholomew's cemetery.

The cemetery expansion will be developed in stages. New burial space is expected to become available approximately five years after development consent is granted for the cemetery. The site plan is outlined in Figure 2.1.

The expanded cemetery is expected to ultimately include:

- Over 10,000 burial plots
- Above ground crypts
- Columbarium walls for ashes interment
- Ancillary facilities such as a chapel, café, office and flower shop, with associated car parking near Tarlington Place.

Table 3.1 summarises the yield of both the existing and potential future expansion of the site.

Table 3.1: Area schedule

U	Size	
Existing cemetery	Reactivation of existing church and cemetery	3.17 hectares
Future cemetery expansion	Cemetery expansion and ancillary facilities	8.39 hectares
Тс	11.56 hectares	

4. Executive Summary

The land proposed for the expansion of the cemetery has been vacant and unused for over 30 years. The existing cemetery has seen very little regular use since the last Anglican Church service was held in 1967 and the sale of new interment rights was ceased in 1972. The existing St Bartholomew's Church and Cemetery has a site area of approximately 3.17 hectares, with newly acquired land adding a further six hectares. An additional 2.39 hectares of land is intended to be acquired for the cemetery expansion, including two hectares from other land owners and 0.39 hectares from the closure of St Bartholomew's Place, bringing the total area for the proposed cemetery site to 11.56 hectares. This is a total increase of 8.39 hectares to the existing cemetery. The planning proposal seeks to reclassify the Council-owned expansion lands from "community land" to "operational land" and to rezone the additional 8.39 hectares of land to allow for the expansion of the existing St Bartholomew's cemetery.

The proposed cemetery expansion will be developed in stages. New burial space is expected to become available approximately five years after development consent is granted for the cemetery. Stage 1 will involve the opening the one-hectare of vacant land and the existing cemetery site, to burials.

The proposed expanded cemetery is expected to ultimately include:

- over 10,000 burial plots
- above ground crypts
- columbarium walls for ashes interment
- ancillary facilities such as a chapel, café, office and flower shop, with associated car parking near Tarlington Place.

Vehicle access to the site is proposed via the two existing driveways along Ponds Road and one existing driveway at Tarlington Place.

Based on an empirical assessment, the proposed development would likely generate a parking demand of up to 115 parking spaces in the peak hour.

The on-site car park would likely accommodate approximately 50 parking spaces, with the remaining parking demand accommodated for on-street, along 400 metres of Tarlington Place and the proposed internal access road. It is recommended that a provision of two motorcycle spaces be provided on site for use by staff and visitors. It is recommended that a minimum provision of one and 13 bicycle spaces be provided on site for use by staff and visit for use by staff and visitors, respectively.

The proposed development would generate 37 and 32 trips in the AM and PM commuter peak hours, respectively and up to 74 trips during the weekend noon commuter peak hour. The proposed development would generate up to 66 and 115 trips during the cemetery's peak weekday and weekend peak hours respectively.

Roads and Maritime Services (Roads and Maritime) is planning the future upgrade of the Prospect Highway between Reservoir Road at Prospect and 200 metres north of St Martins Crescent at Blacktown for a length of 3.6 kilometres. Considering a growth rate of 1.2 per cent per annum over the next 10 years and the proposed upgrade of Prospect Highway, the key intersections near the site are all expected to operate within satisfactory levels of service, with only minor increases in the delay and queue at the intersections of Prospect Highway/ M4 eastbound ramps and Great Western Highway (GWH)/ Tarlington Place. It is recommended that two bus stops be located along Prospect Highway and GWH, with associated shared paths and crossings recommended for pedestrians and cyclists across the Prospect Highway.

Against existing traffic volumes near the site, the additional traffic generated by the proposed development could not be expected to compromise the safety and function of the surrounding road network.

5. Existing Operations

5.1 Surrounding Key Intersections

The following key intersections currently exist near the site (as shown in Figure 5.1):

- 1. Prospect Highway/ Ponds Road (unsignalised)
- 2. Prospect Highway/ M4 eastbound ramps (unsignalised roundabout)
- 3. Prospect Highway/ M4 westbound ramps (signalised)
- 4. GWH/ Tarlington Place (unsignalised).

These intersections are shown in Figure 5.1 and Figure 5.2.

Figure 5.1: Site

Figure 5.2: Surrounding key intersections

Base map source: Sydway Publishing Pty Ltd, accessed 07/02/18.

5.2 Traffic Volumes

GTA commissioned traffic movement counts at the following four key intersections on Sunday 9 December 2017 and Tuesday 11 December 2017 during the weekday (7am to 9am and 4pm to 6pm) and weekend (11am to 1pm) peak periods:

- Prospect Highway/ Ponds Road (unsignalised)
- Prospect Highway/ M4 eastbound ramps (unsignalised roundabout)
- Prospect Highway/ M4 westbound ramps (signalised)
- GWH/ Tarlington Place (unsignalised).

Photos of the adjoining roads are shown in Appendix A.

The weekday AM and PM as well as weekend noon peak hour traffic volumes are summarised in Figure 5.3, with full results contained in Appendix B.

It is noted that the U-turning traffic volumes at the Prospect Highway/ M4 eastbound ramps intersection is a reflection of the number of vehicles which intended to make a right-turn from Ponds Road onto the Prospect Highway, however did not attempt such manoeuvres as it is particularly difficult to turn right from Ponds Road onto the Prospect Highway. As such, the right-turning volumes from Ponds Road are theoretically higher than the surveyed volumes.

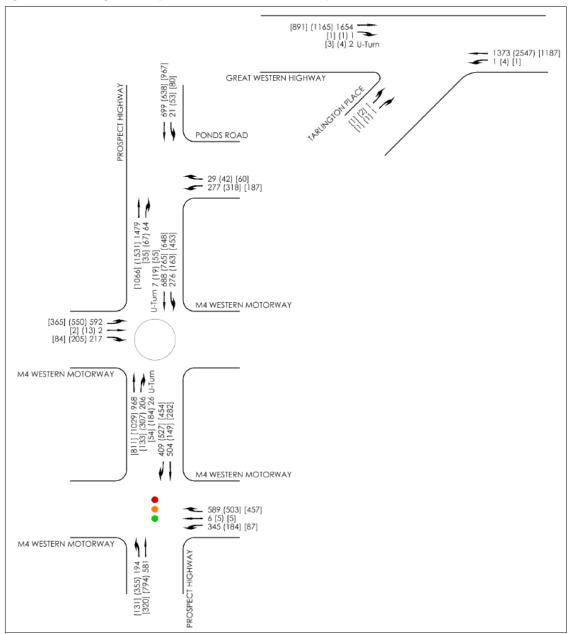


Figure 5.3: Existing weekday AM/ PM and weekend noon peak hour traffic volumes

Weekday AM (Weekday PM) [Weekend Noon]

5.3 Intersection Operation

The operation of the key intersections within the study area have been assessed using SIDRA Intersection¹, a computer-based modelling package which calculates intersection performance. The commonly used measure of intersection performance, as defined by RMS, is vehicle delay. SIDRA Intersection determines the average delay that vehicles encounter and provides a measure of the level of service. A level of service D or better is generally considered to be acceptable operating conditions.

Table 5.1 shows the criteria that SIDRA Intersection adopts in assessing the level of service.

¹ Program used under license from Akcelik & Associates Pty Ltd.

Level of service	Average delay per vehicle Traffic signals, roundabout 0 (seconds/vehicle) 0		Give way and stop sign
А	Less than 14	Good operation	Good operation
В	15 to 28	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity
С	29 to 42	Satisfactory	Satisfactory, but accident study required
D	43 to 56	Near capacity	Near capacity, accident study required
Е	57 to 70	At capacity, at signals incidents will cause excessive delays	At capacity, requires other control mode
F	Greater than 70	Extra capacity required	Extreme delay, major treatment required

Table 5.1: SIDRA Intersection level of service criteria

Table 5.2 presents a summary of the existing operation of the intersection, with full results presented in Appendix C of this report.

Intersection	Peak	Leg	Degree of saturation	Average delay (second)	95th percentile queue (metre)	Level of service
		South - Prospect Highway	0.10	10	3	А
	AM	East - Ponds Road	0.93	38	47	С
		North - Prospect Highway	0.42	6	139	А
Prospect		South - Prospect Highway	0.10	10	3	А
Highway/	PM	East - Ponds Road	0.98	52	83	D
Ponds Road		North - Prospect Highway	0.41	6	304	А
		South - Prospect Highway	0.11	16	3	В
	Saturday	East - Ponds Road	0.86	37	26	C A
		North - Prospect Highway	0.97	8	0	
		Southeast - M4 eastbound off- ramp	0.41	11	28	А
	AM	North - Prospect Highway	0.98	55	199	D
		Southwest - Prospect Highway	0.50	22	38	В
Prospect Highway/ M4		Southeast - M4 eastbound off- ramp	0.46	11	25	А
eastbound	PM	North - Prospect Highway	1.04	109	199	F
ramps		Southwest - Prospect Highway	0.54	26	51	В
		Southeast - M4 eastbound off- ramp	0.36	11	19	А
	Saturday	North - Prospect Highway	0.90	21	183	В
		Southwest - Prospect Highway	0.29	17	11	В
		South - Prospect Highway	nway 0.81	31	178	С
	AM	East - M4 westbound off-ramp	0.85	35	122	С
	AM	North - Prospect Highway	0.83	20	93	В
Prospect		Overall	0.85	29	178	С
Highway/ M4		South - Prospect Highway	0.92	37	278	С
westbound	PM	East - M4 westbound off-ramp	0.89	44	102	D
ramps	F/VI	North - Prospect Highway	0.93	28	80	В
		Overall	0.93	36	278	С
	Saturday	South - Prospect Highway	0.56	32	49	С
	Saturday	East - M4 westbound off-ramp	0.58	34	10	С

Table 5.2: Existing operating conditions

N140040 // 22/06/18 Transport Impact Assessment // Issue: C St Bartholomew's Cemetery Expansion, Planning Proposal

Intersection	Peak	Leg	Degree of saturation	Average delay (second)	95th percentile queue (metre)	Level of service
	North - Prospect Highway		0.57	17	6	В
		Overall	0.58	26	11	В
		East - GWH	0.26	6	0	А
	AM	West - GWH	0.01	22	1	В
		Southwest - Tarlington Place	0.00	9	0	A
GWH/		East - GWH	0.47	6	1	А
Tarlington	PM	West - GWH	0.03	32	1	С
Place		Southwest - Tarlington Place	0.00	9	0	А
		East - GWH	0.22	6	0	А
	Saturday	West - GWH	0.01	17	0	of service B A B A A A C C A
		Southwest - Tarlington Place	0.00	8	0	А

Based on the above assessment and site observations, there is considerable traffic congestion through the Prospect Highway, M4 eastbound ramps and M4 westbound ramps. The roundabout of Prospect Highway/ M4 eastbound ramps and major signalised intersection of Prospect Highway/ M4 westbound ramps experiencing peak period queuing and delays during the PM peak hour.

The above congestion will be addressed as part of the Prospect Highway upgrade which will provide increased capacity in order to cater for future traffic growth on the Prospect Highway between Reservoir Road at Prospect and St Martins Crescent at Blacktown. The Prospect Highway upgrade is detailed in Section 6.2.

The worst delay occurs on the southbound movement on the Prospect Highway approaching the M4 eastbound ramps, with an average delay of 109 seconds while the maximum vehicle queue of 199 metres occurs during the PM peak hour. The vehicle queue associated with the southbound movement extends past Ponds Road during the weekday AM and PM peak periods.

The northbound movements on the Prospect Highway are observed to be affected by the entering traffic from the M4 and GWH eastbound ramps onto the Prospect Highway and the intersections to the north, including Prospect Highway with Stoddart Road and Harrod Street.

Much of the congestion at the intersection of Prospect Highway/ Ponds Road is influenced by the intersection of Prospect Highway/ M4 eastbound ramps with the westbound Ponds Road traffic and southbound Prospect Highway traffic affected by the southbound Prospect Highway queue at the M4 eastbound ramps.

The northern and eastern legs of the intersection of Prospect Highway/ Ponds Road currently operate at capacity with level of service C and D during the AM and PM peak hours, respectively. The eastern approach experiences vehicle queues of up to 47 metres and 83 metres during the weekday AM and PM peak hours, respectively.

Notwithstanding that, the westbound traffic turning right from Ponds Road and Prospect Highway are not adversely affected by the southbound traffic as the southbound traffic was observed to give way to these movements. The southern approach of this intersection currently experiences negligible queuing and delays during both the weekday AM and PM peak periods.

The intersection of Prospect Highway/ M4 westbound ramps currently operates satisfactorily with the worst delay occurring on the eastern approach of the westbound movement on the M4 exitramp. This movement has an average delay of 44 seconds while the maximum vehicle queue of 278 metres occurs on the southbound movement on Prospect Highway during the PM peak hour.

The vehicle queue along Prospect Highway/ M4 westbound ramps for the southbound movement extends past the M4 eastbound ramps in the PM peak.

The intersection of GWH/ Tarlington Place currently operates satisfactorily with minimal queues and delays on all approaches.

5.4 Car Parking

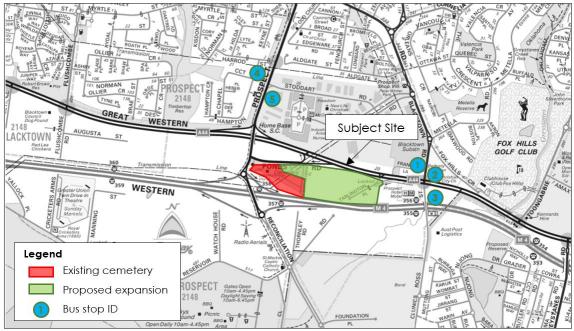
There is an informal on-site car park for the St Bartholomew's Church and Cemetery. The car park is unsealed with no line marking.

Figure 5.4: Existing on-site parking

Basemap source: Sydway

5.5 Public Transport

There are limited bus services in the area. A review of these services is summarised in Table 5.3. The existing bus stops are located more than 500 metres from the existing church and 1.1 kilometres from the proposed chapel, which are outside generally acceptable walking distance.


Further, the access to the existing bus stops along the Prospect Highway from the site is limited by the lack of safe crossing at the Prospect Highway/ Ponds Road and Prospect Highway/ GWH eastbound ramps intersections. There is also a lack of pedestrian footpath link on the eastern side of the Prospect Highway and Clunies Ross Street.

Route number	Route description	Stop ID (see Figure 5.5)	Location of stop	Distance to nearest stop	Frequency on/ off peak			
700	Blacktown to Parramatta	1 and 2	Blacktown Road opposite and at Bethany Christian School	1.2km to existing Church	15 minutes peak/ 30			
800	Fairfield to Blacktown via Wetherill Park	3	Clunies Ross Street after GWH	600m to proposed chapel	minutes off peak			
	Blacktown to		Prospect Highway opposite Stoddart Road	630 m to existing Church 1.2km to proposed chapel	30 minutes			
812	Fairfield	5	Prospect Highway after Stoddart Road	520 m to existing Church 1.1 km to proposed chapel	peak only			

Table 5.3: Public transport provision

Figure 5.5: Existing bus stop locations

Basemap source: Sydway

The 700 bus route is shown in Figure 5.6 and the 800 and 812 bus routes are shown in Figure 5.7.

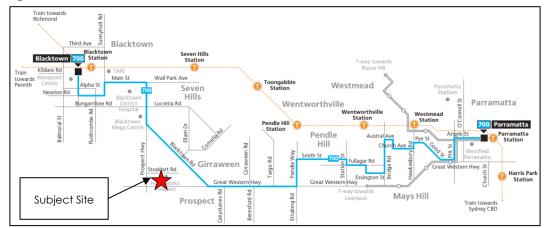


Figure 5.6: 700 bus route

Source: CDC Bus, accessed 12 June 2018

Figure 5.7: 800 and 812 bus routes

5.6 Pedestrian Infrastructure

There is limited pedestrian amenity surrounding the site, with pedestrian paths only provided along the western side of the Prospect Highway. Signalised pedestrian crossings are provided on the western legs of the M4 eastbound and westbound ramps intersections with the Prospect Highway.


5.7 Cycle Infrastructure

A shared path is provided along the western side of the Prospect Highway providing a connection between Blacktown to the sites north and the M4 for cyclists. The M4 also has dedicated cycling lanes in both directions. Signalised pedestrian and cyclist crossings are provided on the left-turn slip lane from the Prospect Highway (southbound) onto the M4 eastern on-ramp and the M4 western on-ramp.

The surrounding cycling network is shown in Figure 5.8.

Source: Transit Systems, accessed 24 May 2018

Figure 5.8: Surrounding cycling network

The Prospect Highway upgrade would improve the temporary pedestrian and cycleway path located between the M4 westbound on-ramp and Harrod Street on the western side of Prospect Highway, detailed in Section 6.

5.8 Crash History

Crash data for the roads around the site has been obtained from RMS. The crash data relates to the latest five-year period to December 2017.

Within this period, 164 crashes occurred in vicinity of the site, with most of the crashes occurring on the M4 and GWH. The reported crashes do not include any fatalities.

A summary of crash history is provided as follows:

- 14 crashes occurred at the Prospect Highway/ Ponds Road intersection with the following characteristics:
 - Five crashes involved rear-end collisions on Prospect Highway at the intersection and resulted in serious injury.
 - Four crashes involved vehicles from adjacent directions (non-opposing directions) at the intersection, colliding with through traffic and resulted in serious injury.
- 14 crashes occurred at the Prospect Highway/ M4 eastbound ramps intersection with the following characteristics:
 - Five crashes involved rear-end collisions at intersection and resulting in serious injury.
 - Six crashes involved drivers losing control turning right on a bend and exiting the carriageway on the outside of the curve resulting in serious injury.
- 14 crashes occurred at the Prospect Highway/ M4 westbound ramps intersection with the following characteristics:
 - Six crashes involved rear-end collisions at the intersection, resulting in serious injury.

- Two crashes involved vehicles from the adjacent direction at the intersection, colliding with through traffic and resulting in serious injury.
- Two crashes involved drivers losing control turning right on a bend and exiting the carriageway on the outside of the curve resulting in serious injury.
- One crash involved a U-turning vehicle at the GWH/ Tarlington Place intersection and resulted in a non-casualty crash.

Using GIS software, the data was plotted with the crashes classified based on crash severity and shown in Figure 5.9.

Figure 5.9: Crashes near the site in the last five years

6. Traffic Impact Assessment

6.1 Vehicle Access

Vehicle access to the site is proposed via the existing two driveways along Ponds Road (access one and access two) and Tarlington Place (access three), as detailed in Figure 6.1. St Bartholomew's Place, whilst proposed to be closed, may also be used as an access point, depending on how the development is staged.

The suitability of the proposed access arrangements is discussed in Section 7.3 of this report.

Figure 6.1: Vehicle accesses

Basemap source: Sydway

The internal road network will be determined at the DA stage. It is recommended that an internal link between the existing and expanded cemetery area be provided.

It is proposed that the internal access road be sign-posted at 10 kilometres per hour between the proposed parking area and 100 metres south of Ponds Road to facilitate pedestrian safety through low vehicle speeds.

Further, it is proposed that Tarlington Place be signed posted at 50 km/h at entry point from GWH with a further speed reduction to 10 kilometres per hour at the proposed parking area. Improvements to the existing Tarlington Place would be required to maintain a safe environment for all users, and may include line marking, pedestrian facilities, signage and speed humps.

6.2 The Prospect Highway Upgrade

Roads and Maritime is planning to upgrade the Prospect Highway between Reservoir Road, Prospect and St Martins Crescent, Blacktown for a length of 3.6 kilometres. The proposed upgrade primarily involves upgrading Prospect Highway from a generally two-lane undivided road to a generally four-lane divided road, with the proposed arrangement near the site shown in Figure 6.2.

The proposed upgrade aims to improve performance of the road corridor with the objective to meet future traffic demand, reduce travel times and improve road safety.

The key features of the Prospect Highway upgrade near the site include:

- Upgrading Prospect Highway to two lanes in each direction with a wide central median between Reservoir Road and Blacktown Road.
- Construction of two new bridge structures over the M4and the GWH to support the Prospect Highway increased carriageway.
- Upgrading the existing GWH eastbound exit ramp to a two-way link road, providing eastbound and westbound access between the GWH and the Prospect Highway.
- Minor upgrades to the M4 westbound ramps/ Prospect Highway signalised intersection.
- Construction of three new signalised intersections, including:
 - M4eastbound ramps/ Prospect Highway
 - Two-way link road/ GWH; and
 - Two-way link road/ Prospect Highway.
- Conversion of the existing priority-controlled intersection of Ponds Road/ Prospect Highway to the left in and left out movements only. As a result, vehicles must access Ponds Road from Prospect Highway by travelling southbound along the Prospect Highway.
- Upgrading pedestrian and cyclist facilities, shared path between the M4westbound exit ramp and Harrod Street.

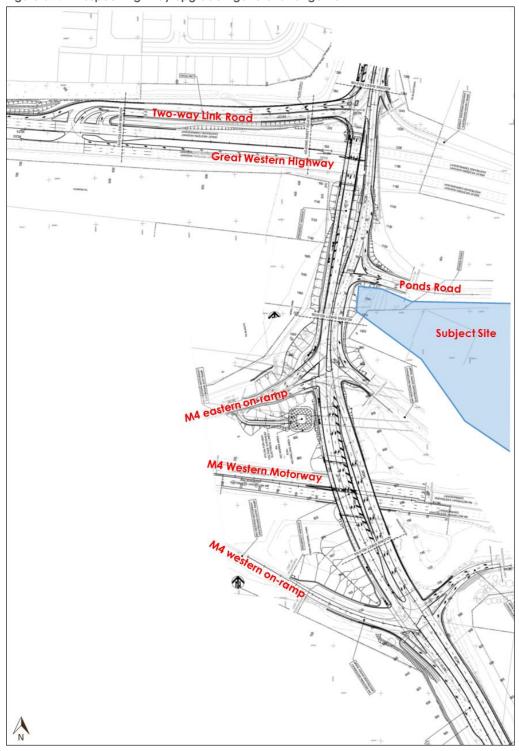


Figure 6.2: Prospect Highway upgrade - general arrangement

Source: MR644 – Prospect Highway from Reservoir Road to Prospect Highway Upgrade 200m North of St Martins Crescent, 100% Detailed Design, City of Blacktown, Drawings Number RD-0103, RD-0104 and RD-0105, <u>http://www.rms.nsw.gov.au/</u>,accessed 05/02/18.

6.3 Traffic Generation

There is currently no traffic generation guidance given within the RMS Guide to Traffic Generating Developments (2002) for cemeteries. As such, the proposed land use's traffic generation was determined based on an empirical assessment of the existing operational Liverpool Cemetery

which is of a similar size. Table 6.1 summarises the similarities between Liverpool Cemetery and St Bartholomew's Cemetery.

Site Size of site (Ha)		Supporting facilities		
Liverpool Cemetery	9.5	Two chapels, condolence lounge, mausoleum and staff office		
St Bartholomew's Cemetery	11.56	Reactivation of the existing cemetery, expansion of the cemetery to the east, including ancillary facilities around Tarlington Place such as a staff office, cafe, flower shop and potentially a chapel		

Table 6.1: Similarities between Liverpool Cemetery and St Bartholomew's Cemetery

Based on the similarities of the two sites, it is assumed that the proposed land use and the current Liverpool Cemetery have similar traffic generation rates for each hectare.

Traffic counts completed at Liverpool Cemetery's three access points indicate that there are between 30 and 25 trips generated in the weekday AM and PM commuter peak hours, respectively. The trips equate to 3.2 and 2.6 trips for every hectare in the weekday AM and PM commuter peak hours, respectively.

The cemetery generated 60 trips during the weekend noon peak hour, which represents 6.3 trips per hectare.

This traffic will have comprised visitors to gravesites, use of the two chapels, the condolence room and staff.

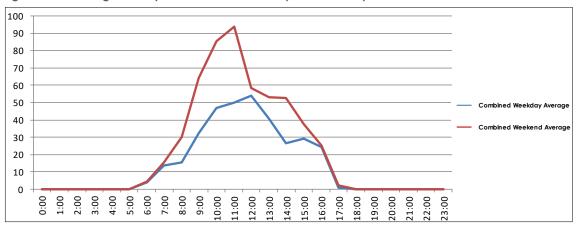
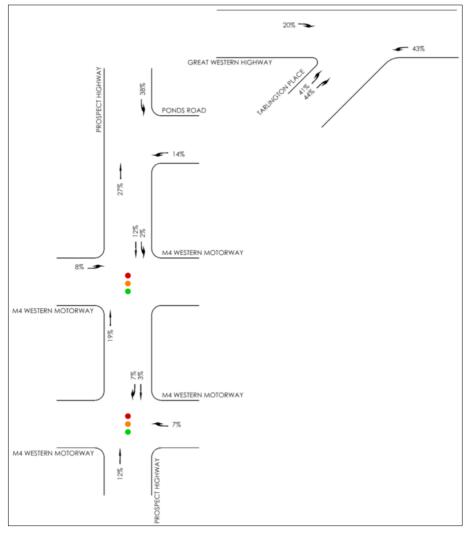


Figure 6.3: Existing two-way traffic volumes of Liverpool Cemetery access

Based on 11.56 hectares, it is likely that the proposed land use would generate 37 and 32 trips in the AM and PM commuter peak hours, respectively and up to 74 trips during the weekend noon commuter peak hour.

It is noted that the peak for cemetery would generally occur during mid/ late morning (such as 10am to 11am), which is confirmed by Figure 6.3, which shows a profile of weekday and weekend traffic volumes at Liverpool Cemetery.

Traffic counts completed at Liverpool Cemetery access points indicate that there are 54 and 94 trips generated in the weekday and weekend cemetery peak hours, respectively. The trips equate to 5.7 and 9.9 trips per hectare in the weekday and weekend cemetery peak hours, respectively.


In the busiest weekday and weekend cemetery peak hours, the proposed land use would generate up to 66 and 115 trips, respectively.

6.4 Distribution and Assignment

The directional distribution and assignment of traffic generated by the proposed land use will be influenced by a number of factors, including the:

- i configuration of the arterial road network in the immediate vicinity of the site
- ii existing operation of intersections providing access between the local and arterial road network
- iii distribution of households near the site
- iv likely distribution of visitor's residences in relation to the site
- v configuration of access points to the site.

Considering the above, for the purposes of estimating vehicle movements, the following directional distributions as shown in Figure 6.4.

In addition, the directional split of traffic (such as the ratio between the inbound and outbound traffic movements) was determined based on traffic surveys at the Liverpool Cemetery and would be:

- Weekday AM peak hour: 75% inbound/ 25% outbound
- Weekday PM peak hour: 50% inbound/ 50% outbound

• Weekend noon peak hour: 50% inbound/ 50% outbound.

Based on the above, Figure 6.5 through Figure 6.7 show the estimated marginal increase in turning movements in the vicinity of the proposed land use.

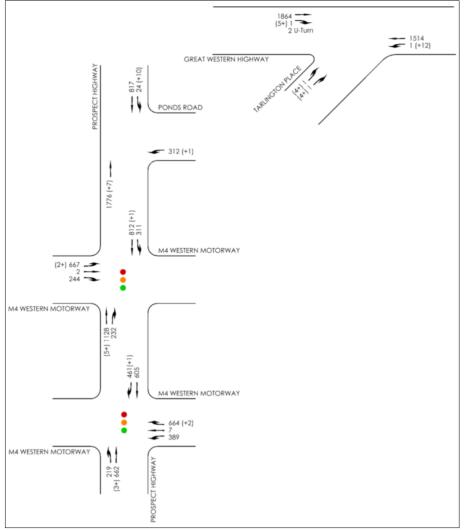


Figure 6.5: Future weekday AM peak hour plus site generated traffic volumes

Future Weekday AM Peak Traffic Volumes (+Weekday AM Peak Development Generated Traffic)

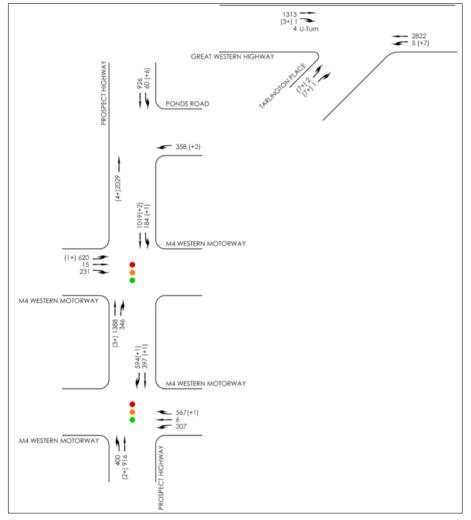


Figure 6.6: Future weekday PM peak hour plus site generated traffic volumes

Future Weekday PM Peak Traffic Volumes (+Weekday PM Peak Development Generated Traffic)

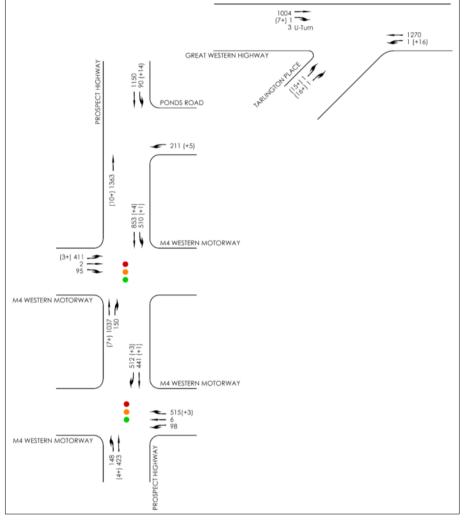


Figure 6.7: Future weekend noon peak hour plus site generated traffic volumes

6.5 Traffic Impact

A review of the Prospect Highway Upgrade Traffic and Transport Assessment², the proposed upgrade matrices show that the number of trips in the corridor will grow from 2018 to 2028 at about 1.2 per cent per year.

Based on the above assessment, an annual 1.2 per cent compound growth rate has been adopted for the intersection operation assessment at the expected completion year of 2028. The future assessment provides an estimate of future traffic volumes to ensure the intersection layout and operation consider background traffic growth.

The results of the future operation of the key intersections considering the cemetery expansion being operational and with the Prospect Highway upgrade, during the weekday AM and PM peak as well as the weekend noon peak are summarised in Table 6.2, with full results provided in Appendix C.

Future Weekend Noon Peak Traffic Volumes (+Weekend Noon Peak Development Generated Traffic)

² Prospect Highway Upgrade Reservoir Road to St Martins Crescent Traffic and Transport Assessment- Contract Number: 13.2592.1599, prepared for NSW RMS, SMEC Australia, dated 11 April 2014

1103	Jeer night	way opgrade)				
Intersection	Peak	Leg	Degree of saturation	Average delay (sec)	95th percentile queue (m)	Level of service
		South	0.51	0	0	А
	AM	East	0.32	13	11	А
		North	0.02	6	0	А
Prospect		South	0.57	0	0	А
Highway/ Ponds	PM	East	0.36	13	14	А
Road [1]		North	0.04	6	0	А
		South	0.39	0	0	А
	Saturday	East	0.22	14	6	А
		North	0.06	6	0	А
		Southeast	0.68	23	109	В
		North	0.68	25	124	В
	AM	Southwest	0.88	49	127	D
		Overall	0.88	30	127	С
Prospect		Southeast	0.82	20	95	В
Highway/ M4	DNA	North	0.83	32	131	С
eastbound	PM	Southwest	0.9	53	125	D
ramps ^[1]		Overall	0.90	31	131	С
	Cost under (Southeast	0.46	15	53	А
		North	0.47	14	90	А
	Saturday	Southwest	0.92	63	88	E
		Overall	0.92	23	90	В
		South	0.77	35	135	С
		East	0.8	29	140	С
	AM	North	0.78	24	96	В
		Overall	0.80	29	140	с
Prospect		South	0.7	28	133	В
Highway/ M4	PM	East	0.89	43	114	D
westbound	P/M	North	0.72	26	97	В
ramps		Overall	0.89	31	133	С
		South	0.43	31	60	С
	Saturday	East	0.92	54	110	D
	Salarady	North	0.43	17	67	В
		Overall	0.92	31	110	С
		East	0.29	6.1	0.6	А
	AM	West	0.02	26.6	0.5	В
		Southwest	0.01	9.0	0.2	A
o)		East	0.53	6.1	0.8	А
GWH/ Tarlington Place	PM	West	0.02	41.9	0.5	С
1,400		Southwest	0.01	10.0	0.2	А
		East	0.24	6.1	0.8	А
	Saturday	West	0.02	19.6	0.4	В
		Southwest	0.02	8.4	0.5	А
[1] Worst movement	reported for	unsignalised interse	ction			

Table 6.2: Future operating conditions (with cemetery expansion being operational and with the Prospect Highway upgrade)

[1] Worst movement reported for unsignalised intersection.

Based on the above assessment, the intersection of Prospect Highway/ Ponds Road is expected to operate at level of service A during the weekday AM and PM as well as weekend noon peak hours with the conversion of the intersection to left-in left-out movements only.

There is considerable reduction in the peak period queuing and delays at the Prospect Highway/ M4 eastbound ramps intersection, specifically with the currently congested northern leg. The intersection would generally continue to operate at the same levels of service C during the weekday peak hours and level of service B during the weekend noon peak hour. The northern leg is expected to experience reductions to average delays of up to 77 seconds and 95th percentile queues up to 93 metres during the peak hours.

It is predicted that Prospect Highway/ M4 westbound ramps intersection will operate at similar level of service C during the weekday AM and PM peak hours.

The intersection of GWH/ Tarlington Place is expected to continue to operate satisfactorily with minimal queues and delays on all approaches, with minor increase of delay up to 10 seconds per vehicle on the eastbound right-turn lane.

6.6 Summary

As discussed, the proposed land use would generate 37 and 32 trips in the AM and PM commuter peak hours, respectively and up to 74 trips during the weekend noon cemetery peak hour.

In addition, the proposed land use would generate up to 66 and 115 trips during the cemetery's busiest weekday and weekend peak hours respectively.

The additional development traffic volumes are no more than one vehicle movement every minute through the adjacent key intersections during the weekday and weekend peak hours and no more than two vehicle movements during the cemetery's busiest weekday and weekend peak hours.

Moreover, the use of Ponds Road and GWH by vehicles accessing the cemetery and church uses which abut them is entirely appropriate and consistent with their existing functional role in the road network.

In summary, against existing traffic volumes near the site, the additional traffic generated by the proposed cemetery use could not be expected to compromise the safety and function of the surrounding road network.

6.7 Construction Traffic Impact

A construction traffic management plan should be prepared prior to works commencing on-site.

7. Parking and Vehicle Access

7.1 Parking Requirements

Car Parking

There are currently no parking requirements within DCP 2015 in relation to cemeteries. As such, the proposed land use's car parking requirement was determined based on an empirical assessment of the existing similar size Liverpool Cemetery.

Off-street car parking to support the expanded cemetery will include existing parking around St Bartholomew's Church and a new car park area, likely to be located around Tarlington Place.

Considering the peak demand of traffic generated by the proposed land use discussed in Section 6.1, parking demand of up to 115 vehicles could be generated during the busiest period. It is recommended that approximately half (60 spaces) of the parking spaces required be provided within a formal car park near the proposed ancillary facilities at Tarlington Place. The remaining 55 car parking spaces, equivalent to about 350 metres (based upon an average car park length of 6 metres) of kerbside parking could be accommodated along Tarlington Place and the internal access road.

The internal access road and parking aisles should be designed with a minimum width of 6 metres to facilitate two-way movements and an additional 2.1 metres paved surfaces on either/ both sides of the road where on-street parking are proposed.

It is proposed that the kerbside parking be staggered on either side of Tarlington Place and the internal access road every 50 metres to provide parking opportunities for vehicles entering from both the access two via Ponds Road and access three via Tarlington Place.

Minibus Parking

DCP 2015 does not require dedicated minibus parking.

However, it is common for minibuses (maximum of 7 metres length, for a Toyota Coaster minibus or similar) to be used to transport visitors to/ from services associated with funeral activities. The use of minibuses, which typically have a capacity of approximately 20 passengers, is encouraged to reduce the overall traffic volumes generated by the proposed land use, during extraordinary events.

It is recommended that two minibus parking spaces be provided, with the minibus arriving and departing via Tarlington Place only. The proposed minibus parking spaces should be designed to not impact the car circulation within the proposed parking area.

In the rare event when more than two minibus parking spaces are required, these minibuses could park on the kerbside along the Tarlington Place.

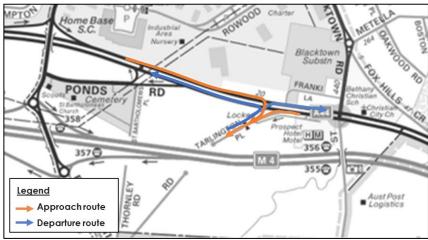


Figure 7.1: Proposed minibus approach and departure routes

Basemap source: Sydway.

Service Vehicle

Given the nature of the proposed land use, servicing requirements (for larger vehicles) would be limited to regular refuse collection (up to Council's 11-metre long garbage truck), the occasional service vehicle (e.g. maintenance/ delivery/ trade vehicles) and emergency vehicle. Garbage collection would occur within the parking areas, with bins to be wheeled to the kerbside for collection.

It is noted that access one, the existing access one at Ponds Road provides sufficient width for Council's garbage truck to manoeuvre into and out of the site in a forward direction. In addition, the informal parking area in front of the existing Church provides sufficient manoeuvring area for the garbage truck to complete a three-point turn and leave the site in a forward direction.

It is also proposed that all service vehicles for the new facilities to enter and exit via Tarlington Place as shown in Figure 7.1.

The maintenance/ delivery/ trade vehicles which typically include vans, utes or cars, could use the car parking spaces within the proposed car parking facility as part of the cemetery expansion.

Motorcycle Parking

DCP 2015 does not provide any requirements for motorcycle parking. It is, however, recommended that dedicated motorcycle parking spaces to be provided at the rate of one space per 25 car parking spaces. Based on the peak parking demand of 115 car spaces, the proposed land use is recommended to provide four motorcycle parking spaces. Motorcycle spaces are required to be 2.5 metres long by 1.3 metres wide.

7.2 Car Parking Layout

The proposed car park design would be developed as part of any future DA for the site. Car park layout would be designed to be in accordance with the requirements of DCP 2015 and the Australian Standard AS2890.1 (2004) Part 1: Off-street car parking, AS2890.2 (2002) Part 2: Off-street commercial vehicle facilities and AS2890.6 (2009) Part 6: Off-street parking for people with disabilities.

DCP 2015 requires car parking spaces for medium turnover to measure 5.2 metres long by 2.6 metres wide and be accessed via a minimum 7-metre wide aisle.

It is recommended that disabled spaces be measure 5.5 metres long by a minimum of 3.2 metres wide, in accordance with the Australian Standard requirements.

7.3 Vehicle Access Review

Access One (Secondary Access via Ponds Road)

Access one is the westernmost two-way vehicle access to the existing Church and is located around 30 metres east of the priority-controlled intersection of Prospect Highway/ Ponds Road. The site access would technically have a Stopping Sight Distance (SSD) requirement of 65 metres for a posted speed limit of 60 kilometres per hour, in accordance with AS 2890.1:2004. Given the proximity of access one to the Prospect Highway, an adequate sight distance of 65 metres would not be achievable.

Based on the above and the associated traffic queues due to entering traffic from eastbound Ponds Road, a dedicated eastbound right-turn lane proposed as part of the Prospect Highway upgrade will mitigate the inadequate SSD. The proposed 20-metre right-turn lane can accommodate up to three cars and is considered acceptable for providing access to the existing church. The proposed access arrangements of left-in, left-out and right-in only is shown in Figure 7.2. With the proposed access, right-turning from the site (south) onto Ponds Road is no longer permitted.

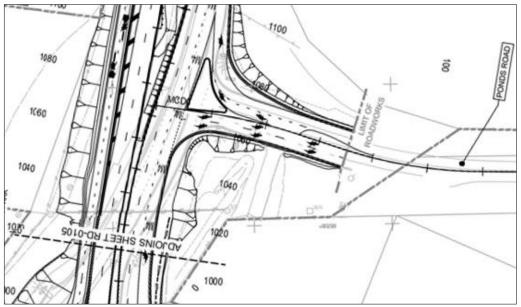


Figure 7.2: Proposed access one

Source: MR644 – Prospect Highway from Reservoir Road to Prospect Highway Upgrade 200m North of St Martins Crescent, 100% Detailed Design, City of Blacktown, Drawings Number RD-0103, RD-0104 and RD-0105, http://www.rms.nsw.gov.au/, accessed 05/02/18.

The site access should also serve as a secondary access and be predominantly used for visitor, staff and service vehicles of the existing church only, with the primary accesses to the existing and new cemeteries located to the east via Ponds Road and Tarlington Place.

Overall, access one's location and access arrangements are functional, with an appropriate level of safety for the intended role and use.

7.3.1 Access Two (Primary Access via Ponds Road)

Access two is located 140 metres east of access one and would form the primary vehicle access for visitor, staff and service vehicles for the existing cemetery, for vehicles generally arriving from and departing to Prospect Highway. The existing access layout, with all turning movements permitted via Ponds Road, would be maintained.

As discussed, the traffic generated in the peak period will be up to 115 vehicles per hour between 10am and 3pm. It is noted that this will occur outside of the road network peak periods.

Considering the low turning volumes into the site during the peak hours, a basic right-turn lane treatment (BAR) intersection is recommended. This will allow through vehicles along Ponds Road to not be obstructed by vehicles turning into the proposed land use.

Site inspections have indicated that adequate sight distances can be provided at this access point. The access arrangement, as shown in Figure 7.3 will be detailed in consultation with Council and RMS.

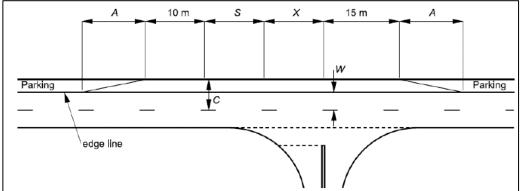


Figure 7.3: Intersection layout sketch of an Urban Basic Right-turn treatment (BAR)

Source: Austroads Guide to Road Design Part 4A: Unsignalised and Signalised Intersections 2017

7.3.2 Access Three (Primary access via Tarlington Place)

Access 3 via Tarlington Place would form the primary access for visitor, staff and service vehicles accessing the eastern end of the expanded cemetery (where ancillary facilities, such as an office, café, flower shop and potentially a chapel) for vehicles generally arriving and departing from GWH. The existing access layout, with all turning movements permitted via Tarlington Place would also be maintained.

7.4 Internal Access Road Review

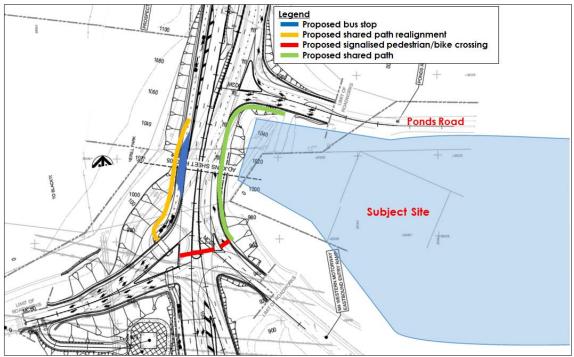
7.4.1 Internal Road Design

Due to the nature of the proposed use, the entering and exiting traffic is expected to be very 'tidal' during peak periods. Most of the traffic will be entering prior to a service and exiting following a service. In the event when two services are to be held in a day, it is noted that there will be around one to two hours between the conclusion of the first service and the commencement of the second service. As such, the likelihood that a vehicle will be required to pass a vehicle travelling in the opposite direction on the internal access road is expected to be low.

As discussed, it is proposed that the internal access road be a minimum of six metres wide to allow two-way traffic movements.

8. Sustainable Transport Infrastructure

8.1 Public Transport


The site is currently accessible by public transport with a bus stop within 520 metres, located north of the site at the Prospect Highway/ Stoddart Road intersection.

As part of the Prospect Highway upgrade, two new bus stops (northbound and southbound) are proposed adjacent to the intersection of the Prospect Highway/ Reservoir Road/ Reconciliation Road, however this would be around one kilometre from the site.

As such, as part of the PP, it is recommended that one bus stop is be located along the Prospect Highway between the intersections of Prospect Highway/ Ponds Road and Prospect Highway/ M4 eastbound ramps. The new bus stop would require the following modifications to the proposed Prospect Highway design, as shown in Figure 8.1:

- Realignment of the proposed shared path west of the Prospect Highway north of the Prospect Highway/ M4 eastbound ramps intersection.
- Provision of east-west crossing for pedestrian and cyclist on the northern leg of the Prospect Highway/ M4 eastbound ramps intersection.
- Provision of shared path east of the Prospect Highway north of the Prospect Highway/ M4 eastbound ramps intersection to the proposed access one.

Source: MR644 – Prospect Highway from Reservoir Road to Prospect Highway Upgrade 200m North of St Martins Crescent, 100% Detailed Design, City of Blacktown, Drawings Number RD-0103, RD-0104 and RD-0105, http://www.rms.nsw.gov.au/, accessed 05/02/18.

The proposed bus stop along Prospect Highway would be 300 metres from the existing church.

In addition, the proposed bus stop along the Prospect Highway, it is also recommended that a bus stop be located along GWH, about 20 metres west of Tarlington Place.

Such recommendations would require further investigations and consultation with RMS considering their proximity to the intersections of Prospect Highway/ M4 eastbound ramps and GWH/ Tarlington Place as well as Transport for NSW and bus operators to ensure there will be sufficient demand for the additional stops.

It is noted that the development of the lands west of the Prospect Highway between GWH and M4 which are currently zoned as IN1 – General Industrial. The proximity to the recommended bus stops could contribute to increasing the use of public transport (bus only and bus/ rail) by visitors and staff and discourage the use of private motor vehicles.

The recommended bus stop layout will be detailed during the DA stage.

8.2 Bicycle and Walking Network

The proposed Prospect Highway upgrade would improve pedestrian and cyclist connectivity and amenity along the Prospect Highway corridor, providing safer crossing provisions at signalised intersections and implementing additional shared user path facilities. The new northbound bridges over the M4 and GWH on the western side of the existing bridge structures, include provision of a shared pedestrian and cyclist path.

Figure 8.1 shows the shared path and crossing to be proposed as part of the bus stops on the Prospect Highway.

If the recommended bus stops are not installed, the proposed shared path and crossing for pedestrians and cyclists could be implemented to provide the missing east-west crossing along the Prospect Highway near the site, as shown in Figure 8.2.

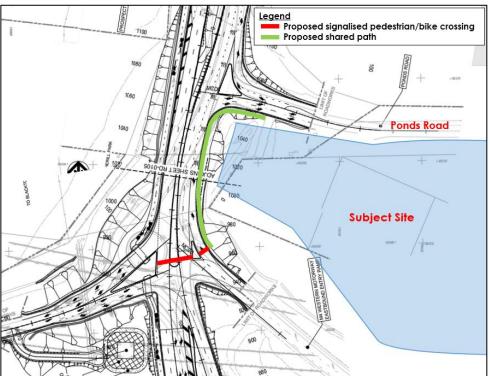


Figure 8.2: Proposed shared path and crossing

Source: MR644 – Prospect Highway from Reservoir Road to Prospect Highway Upgrade 200m North of St Martins Crescent, 100% Detailed Design, City of Blacktown, Drawings Number RD-0103, RD-0104 and RD-0105, http://www.rms.nsw.gov.au/, accessed 05/02/18.

8.3 Bicycle End of Trip Facilities

DCP 2015 does not provide bicycle parking requirement, however, encourages the provision of bicycle parking, with adequate shower and change facilities provided for staff (where appropriate).

In acknowledgement of general changing travel patterns and the increased use of active modes of travel, the potential to incorporate these facilities has been reviewed. As such, reference to the Planning Guidelines for Walking and Cycling (Department of Planning, 2004) suggests the following bicycle parking provisions for community facilities:

- Staff (long-term use) rate of three to five per cent of number of staff
- Visitor (short-term use) rate of five to 10 per cent of visitors.

Applying this to the anticipated number of staff (14 staff) and up to 115 vehicles (and vehicle occupancy of 2.2 visitors per vehicle) per hour between 10am and 3pm, the proposed land use could provide a minimum of one and 13 bicycle spaces are provided for staff and visitors respectively.

Bicycle parking spaces would be designed in accordance with relevant Australian Standard (AS2890.3 – Bicycle Parking Facilities). To comply with the Australian Standard, the bicycle parking spaces for visitor bicycle spaces will need to be provided as Class 3 bicycle spaces (such as bicycle racks in public area at 1,200 millimetres centre to centre). Secure racks for use by staff should be provided in a secure location (such as individual locker of secure room/ enclosure).

The proposed cemetery expansion land has been vacant and unused for over 30 years. The existing cemetery has seen very little regular use since the last Anglican Church service was held in 1967 and the sale of new interment rights ceased in 1972.

The use of the subject land as a cemetery (including ancillary uses such as an office, café, flower shop and potentially a chapel) is likely to:

- Generate a parking demand of up to 115 parking spaces in the peak hour.
- Require the provision of 115 car spaces, two motorcycle spaces and 14 bicycle spaces be provided on site for use by staff and visitors.
- Generate 37 and 32 trips in the AM and PM commuter peak hours, respectively and up to 74 trips during the weekend noon commuter peak hour.
- Generate up to 66 and 115 trips during the cemetery's peak weekday and weekend peak hours, respectively.
- Warrant no more than three access points (two via Ponds Road and one via Tarlington Place.

It is recommended that two bus stops be located on the Prospect Highway and GWH with associated shared path and crossing for pedestrians and cyclists across the Prospect Highway.

Considering a growth rate of 1.2 per cent per annum over the next 10 years and the proposed upgrade of the Prospect Highway, the key intersections near the site are all expected to operate within satisfactory levels of service, with only minor increases in the delay and queue at the intersections of Prospect Highway/ M4 eastbound ramps and GWH/ Tarlington Place.

The additional traffic that would be generated by the proposed cemetery use of the land is not expected to compromise the safety and function of the surrounding road network.

Appendix A

Adjoining Roads

N140040 // 22/06/18 Transport Impact Assessment // Issue: C St Bartholomew's Cemetery Expansion, Planning Proposal

Figure A.1: GWH (looking east from Tarlington Place)

Figure A.2: GWH (looking west towards Tarlington Place)

Figure A.3: Prospect Highway (looking south towards Ponds Road)

Figure A.4: Prospect Highway (looking north towards Ponds Road)

Figure A.5: Ponds Road (looking east from Prospect Highway)

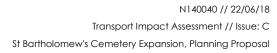
Figure A.6: Ponds Road (looking west towards Prospect Highway)

Figure A.7: M4 (looking east from Prospect Highway)

Figure A.8: M4 (looking west towards Prospect Highway)

Figure A.9: Tarlington Place (from Ponds Road towards the cemetery)

Figure A.10: St Bartholomew's Place (from Ponds Road towards the cemetery)



Appendix B

Appendix B

Survey Results

TTM Reference: 17SYD0166 Location: Prospect Hwy & Ponds Rd Suburb: Prospect Date: Tuesday, 12 December 2017 Survey Duration: 0700-1000 & 1500-1900 Weather: Fine Notes:

AM Peak: 0715-0815

PM Peak: 1600-1700

Time					Southe	rn App	roach:		pect Hw	y									Easte	rn App	roach:												North	ern Appi	roach:	Prosp	ect Hwy					
15 min		-	Straigh	nt				Righ	1		UTum	TOTAL	Cycle	Peds			Left					Right	-		UTurn	TOTAL	Cycle	Peds			Left					Straigh			U Turn	TOTAL	Cycle	Peds
time start	Light	Heavy	Bus	Total	Cycle	Heavy	/ Truck	Bus	Total	Cycle			- ,		Light	Heavy	Bus	Tota	Cycle	Light	Heavy	Bus	Total	Cycle			-,		Light	Heavy	Bus	Total	Cycle		Heavy	Bus	Total	Cycle			~,	
7:00	300	38	0	338	0	12	1	0	13	0	0	351	0	0	46	12	0	58	0	2	1	0	3	0	0	61	0	0	1	2	0	3	0	182	23	1	206	0	0	209	0	0
7:15	341	40	0	381	0	19	1	0	20	0	0	401	0	0	51	7	0	58	0	5	0	0	5	0	0	63	0	0	0	0	0	0	0	179	20	1	200	0	0	200	0	0
7:30	332	32	1	365	0	11	0	0	11	0	0	376	0	0	62	3	0	65	0	6	4	0	10	0	0	75	0	0	4	3	0	7	0	164	20	0	184	0	0	191	0	0
7:45	358	26	0	384	0	10	1	0	11	0	0	395	0	0	71	4	0	75	0	7	0	0	7	0	0	82	0	0	10	0	0	10	0	145	23	1	169	0	0	179	0	0
8:00	311	37	1	349	0	21	1	0	22	0	0	371	0	0	74	5	0	79	0	4	3	0	7	0	0	86	0	0	2	2	0	4	0	119	27	0	146	0	0	150	0	0
8:15	329	44	0	373	0	14	1	0	15	0	0	388	0	0	48	8	0	56	0	1	0	0	1	0	0	57	0	0	5	0	0	5	0	161	30	1	192	0	0	197	0	0
8:30	299	36	1	336	0	14	1	0	15	0	0	351	0	0	77	10	0	87	0	4	2	0	6	0	0	93	0	0	4	1	0	5	0	154	31	0	185	0	0	190	0	0
8:45	272	34	0	306	0	15	4	0	19	0	0	325	0	0	52	5	0	57	0	4	1	0	5	0	0	62	0	0	10	0	0	10	0	176	25	1	202	0	0	212	0	0
9:00	249	35	0	284	0	14	0	0	14	0	0	298	Q	0	45	13	0	58	0	8	0	0	8	0	0	66	0	0	10	4	0	14	0	125	33	0	158	0	0	172	0	0
9:15	231	43	0	274	0	11	1	0	12	0	0	286	0	0	45	4	0	49	0	10	3	0	13	0	0	62	0	0	8	0	0	8	0	158	37	4	199	0	0	207	0	0
9:30	229	40	0	269	0	6	5	0	11	0	0	280	0	0	41	15	0	56	0	4	1	0	5	0	0	61	0	0	10	3	0	13	0	141	35	0	176	0	0	189	0	0
9:45	216	38	0	254	0	5	0	0	5	0	0	259	0	0	34	6	0	40	0	8	1	0	9	0	0	49	0	0	16	1	0	17	0	163	29	1	193	0	0	210	0	0
TOTAL	3467	443	3	3913	0	152	16	0	168	0	0	4081	0	0	646	92	0	738	0	63	16	0	79	0	0	817	0	0	80	16	0	96	0	1867	333	10	2210	0	0	2306	0	0
AM Peak	1331	136	1	1468	0	52	3	0	55	0	0	1523	0	0	230	26	0	256	0	20	5	0	25	0	0	281	0	0	15	5	0	20	0	670	86	3	759	0	0	779	0	0
15:00	297	29	1	327	0	7	3	0	10	0	0	337	0	0	49	10	0	59	0	8	0	0	8	0	0	67	0	0	11	2	0	13	0	153	24	1	178	0	0	191	0	0
15:15	293	34	0	327	0	8	4	0	12	0	0	339	0	0	74	10	0	84	0	12	1	0	13	0	0	97	0	0	11	1	0	12	0	121	18	0	139	0	0	151	0	0
15:30	299	27	1	327	0	9	0	0	9	0	0	336	0	0	81	10	0	91	0	10	3	0	13	0	0	104	0	0	13	0	0	13	0	114	22	1	137	0	0	150	0	0
15:45	318	34	0	352	0	13	0	0	13	0	0	365	0	0	78	6	0	84	0	13	0	0	13	0	0	97	0	0	13	3	0	16	0	137	26	0	163	0	0	179	0	0
16:00	363	18	1	382	0	18	0	0	18	0	0	400	0	0	76	12	0	88	0	6	1	0	7	0	0	95	0	0	9	0	0	9	0	107	22	1	130	0	0	139	0	0
16:15	395	23	1	419	0	11	3	0	14	0	0	433	0	0	62	7	0	69	0	12	0	0	12	0	0	81	0	0	20	2	0	22	0	140	20	0	160	0	0	182	0	0
16:30	342	19	1	362	0	20	2	0	22	0	0	384	0	0	73	8	0	81	0	13	0	0	13	0	0	94	0	0	9	0	0	9	0	161	18	1	180	0	0	189	0	0
16:45	351	17	0	368	0	13	0	0	13	0	0	381	0	0	75	5	0	80	0	10	0	0	10	0	0	90	0	0	12	1	0	13	0	146	22	0	168	0	0	181	0	0
17:00	291	20	0	311	0	17	0	0	17	0	0	328	0	0	68	7	0	75	0	10	0	0	10	0	0	85	0	0	11	1	0	12	0	191	15	1	207	0	0	219	0	0
17:15	361	17	1	379	0	10	1	0	11	0	0	390	0	0	84	4	0	88	0	10	0	0	10	0	0	98	0	0	9	2	0	11	0	173	13	0	186	0	0	197	0	0
17:30	354	8	1	363	0	7	2	0	9	0	0	372	0	0	58	8	0	66	0	15	1	0	16	0	0	82	0	0	16	6	0	22	0	178	18	1	197	0	0	219	0	0
17:45	348	16	0	364	0	12	2	0	14	0	0	378	0	0	37	5	0	42	0	14	0	0	14	0	0	56	0	0	18	0	0	18	0	218	20	0	238	0	0	256	0	0
18:00	342	8	1	351	0	7	0	0	7	0	0	358	0	0	36	0	0	36	0	21	0	0	21	0	0	57	0	0	6	0	0	6	0	218	14	1	233	0	0	239	0	0
18:15	317	13	0	330	0	7	0	0	7	0	0	337	0	0	39	6	0	45	0	13	0	0	13	0	0	58	0	0	11	1	0	12	0	208	20	2	230	0	0	242	0	0
18:30	249	12	1	262	0	12	1	0	13	0	0	275	0	0	33	1	0	34	0	12	0	0	12	0	0	46	0	0	8	0	0	8	0	189	11	1	201	0	0	209	0	0
18:45	273	10	0	283	0	3	3	0	6	0	0	289	0	0	26	3	0	29	0	10	0	0	10	0	0	39	0	0	5	2	0	7	0	183	9	2	194	0	0	201	0	0
TOTAL	5193	305	9	5507	0	174	21	0	195	0	0	5702	0	0	949	102	0	1051	0	189	6	0	195	0	0	1246	0	0	182	21	0	203	0	2637	292	12	2941	0	0	3144	0	0
PM Peak	1405	49	3	1457	0	36	5	0	41	0	0	1498	0	0	215	17	0	232	0	60	1	0	61	0	0	293	0	0	49	8	0	57	0	787	65	2	854	0	0	911	0	0

TTM Reference: 17SYD0166 Location: Prospect Hwy & M4 Eastbound Ramps Suburb: Prospect Date: Tuesday, 12 December 2017 Survey Duration: 0700-1000 & 1500-1800 Weather: Fine Notes:

AM Peak: 0715-0815

PM Peak: 1600-1700

ttm

Time							North	ern Ap	proach:	Prosp	ect Hv	vy														South	ern Ap	proach:	Prosp	ect Hw	ry							
15 min			Left				5	Straigh	nt				Right			U Turn	TOTAL	Cycle	Peds			Left				9	Straigh	nt				Right			U Turn	TOTAL	Cycle	Peds
time start	Light	Heavy	Bus	Total	Cycle	Light	Heavy	Bus	Total	Cycle	Light	Heavy	Bus	Total	Cycle	0 Turn	TOTAL	Cycle	i eus	Light	Heavy	Bus	Total	Cycle	Light	Heavy	Bus	Total	Cycle	Light	Heavy	Bus	Total	Cycle	0 Tulli	TOTAL	Cycle	reus
7:00	77	8	0	85	0	145	26	1	172	0	0	0	0	0	0	1	258	0	0	0	0	0	0	0	184	29	0	213	0	19	22	0	41	0	4	258	0	0
7:15	69	10	0	79	0	153	19	1	173	0	0	0	0	0	0	4	256	0	0	0	0	0	0	0	192	31	0	223	0	31	22	0	53	0	8	284	0	0
7:30	68	11	0	79	0	157	13	0	170	0	0	0	0	0	0	0	249	0	0	0	0	0	0	0	215	23	1	239	0	30	21	0	51	0	9	299	0	0
7:45	61	3	0	64	0	158	23	1	182	0	0	0	0	0	0	1	247	0	0	0	0	0	0	0	248	20	0	268	0	33	17	1	51	0	3	322	0	0
8:00	45	9	0	54	0	139	24	0	163	0	0	0	0	0	0	2	219	0	0	0	0	0	0	0	206	31	1	238	0	29	22	0	51	0	6	295	0	0
8:15	86	10	1	97	0	129	24	1	154	0	0	0	0	0	0	0	251	0	0	0	0	0	0	0	198	32	0	230	0	36	20	0	56	0	3	289	0	0
8:30	61	13	0	74	0	165	28	0	193	0	0	0	0	0	0	2	269	0	0	0	0	0	0	0	210	32	2	244	0	33	15	0	48	0	3	295	0	0
8:45	77	3	0	80	0	148	25	2	175	0	0	0	0	0	0	1	256	0	0	0	0	0	0	0	182	24	0	206	0	27	18	0	45	0	2	253	0	0
9:00	55	15	0	70	0	115	32	0	147	0	0	0	0	0	0	1	218	0	0	0	0	0	0	0	169	21	0	190	0	24	34	0	58	0	2	250	0	0
9:15	60	15	1	76	0	132	26	2	160	0	0	0	0	0	0	7	243	0	0	0	0	0	0	0	129	33	0	162	0	35	16	0	51	0	2	215	0	0
9:30	52	12	0	64	0	132	30	0	162	0	0	0	0	0	0	4	230	0	0	0	0	0	0	0	148	26	0	174	0	29	20	0	49	0	1	224	0	0
9:45	70	11	0	81	0	125	25	1	151	0	0	0	0	0	0	2	234	0	0	0	0	0	0	0	143	24	0	167	0	27	9	0	36	0	3	206	0	0
TOTAL	781	120	2	903	0	1698	295	9	2002	0	0	0	0	0	0	25	2930	0	0	0	0	0	0	0	2224	326	4	2554	0	353	236	1	590	0	46	3190	0	0
AM Peak	243	33	0	276	0	607	79	2	688	0	0	0	0	0	0	7	971	0	0	0	0	0	0	0	861	105	2	968	0	123	82	1	206	0	26	1200	0	0
	_																			_																		
15:00	51	3	0	54	0	145	29	1	175	0	0	0	0	0	0	4	233	0	0	0	0	0	0	0	213	18	1	232	0	56	11	0	67	0	1	300	0	0
15:15	43	4	0	47	0	153	23	0	176	0	0	0	0	0	0	0	223	0	0	0	0	0	0	0	197	28	0	225	0	72	14	0	86	0	1	312	0	0
15:30	35	7	0	42	0	157	21	1	179	0	0	0	0	0	0	4	225	0	0	0	0	0	0	0	216	19	1	236	0	72	12	0	84	0	0	320	0	0
15:45	38	7	0	45	0	182	20	0	202	0	0	0	0	0	0	0	247	0	0	0	0	0	0	0	201	15	0	216	0	46	9	0	55	0	0	271	0	0
16:00	37	6	0	43	0	143	26	1	170	0	0	0	0	0	0	3	216	0	0	0	0	0	0	0	218	9	0	227	0	84	4	0	88	0	33	348	0	0
16:15	28	3	0	31	0	170	21	0	191	0	0	0	0	0	0	5	227	0	0	0	0	0	0	0	248	13	1	262	0	71	4	0	75	0	44	381	0	0
16:30	43	5	0	48	0	181	21	1	203	0	0	0	0	0	0	5	256	0	0	0	0	0	0	0	262	17	1	280	0	73	2	0	75	0	53	408	0	0
16:45	36	5	0	41	0	181	20	0	201	0	0	0	0	0	0	6	248	0	0	0	0	0	0	0	250	10	0	260	0	64	5	0	69	0	54	383	0	0
17:00	60	2	0	62	0	183	22	1	206	0	0	0	0	0	0	1	269	0	0	0	0	0	0	0	217	15	0	232	0	83	5	0	88	0	7	327	0	0
17:15	58	4	0	62	0	200	9	0	209	0	0	0	0	0	0	3	274	0	0	0	0	0	0	0	241	12	1	254	0	83	9	0	92	0	6	352	0	0
17:30	54	4	0	58	0	181	19	1	201	0	0	0	0	0	0	3	262	0	0	0	0	0	0	0	256	8	1	265	0	90	7	0	97	0	2	364	0	0
17:45	61	3	0	64	0	189	17	0	206	0	0	0	0	0	0	5	275	0	0	0	0	0	0	0	255	18	0	273	0	63	5	0	68	0	1	342	0	0
TOTAL	873	66	1	940	0	2652	299	9	2960	0	0	0	0	0	0	53	3953	0	0	0	0	0	0	0	3685	217	8	3910	0	1014	105	1	1120	0	208	5238	0	0
PM Peak	144	19	0	163	0	675	88	2	765	0	0	0	0	0	0	19	947	0	0	0	0	0	0	0	978	49	2	1029	0	292	15	0	307	0	184	1520	0	0

TTM Reference: 17SYD0166 Location: Prospect Hwy & M4 Eastbound Ramps Suburb: Prospect Date: Tuesday, 12 December 2017 Survey Duration: 0700-1000 & 1500-1800 Weather: Fine Notes: Notes:

Time							East	ern Ap	proach	n: M4 En	try Ra	mp														West	ern Ap	proach:	M4 Ex	it Ram	p							
15 min			Left				5	Straigh	ıt				Right			UTurn	TOTAL	Cycle	Peds			Left				5	Straigh	t				Right			UTurn	TOTAL	Cycle	Peds
time start	Light	Heavy	Bus	Total	Cycle	Light	Heavy	Bus	Total	Cycle	Light	Heavy	Bus	Total	Cycle	Orum	TOTAL	Cycle	i eus	Light	Heavy	Bus	Total	Cycle	Light	Heavy	Bus	Total	Cycle	Light	Heavy	Bus	Total	Cycle	Orum	TOTAL	Cycle	r eus
7:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	137	9	0	146	0	0	0	0	0	0	37	10	0	47	0	0	193	0	0
7:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	147	6	0	153	0	1	0	0	1	0	46	11	0	57	0	0	211	0	0
7:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	144	8	0	152	0	0	0	0	0	0	53	11	0	64	0	0	216	0	0
7:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	132	7	0	139	0	1	0	0	1	0	32	14	0	46	0	0	186	0	0
8:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	139	9	0	148	0	0	0	0	0	0	37	13	0	50	0	0	198	0	0
8:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	149	11	0	160	0	0	0	0	0	0	32	11	0	43	0	0	203	0	0
8:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	110	7	0	117	0	2	0	0	2	0	33	6	0	39	0	0	158	0	0
8:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	108	12	0	120	0	0	0	0	0	0	29	17	0	46	0	0	166	0	0
9:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	89	12	0	101	0	1	0	0	1	0	31	22	0	53	0	0	155	0	0
9:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	109	13	0	122	0	0	0	0	0	0	38	15	0	53	0	0	175	0	0
9:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	94	18	0	112	0	0	0	0	0	0	36	18	0	54	0	0	166	0	0
9:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	79	14	0	93	0	1	0	0	1	0	21	25	0	46	0	0	140	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1437	126	0	1563	0	6	0	0	6	0	425	173	0	598	0	0	2167	0	0
AM Peak	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	562	30	0	592	0	2	0	0	2	0	168	49	0	217	0	0	811	0	0
15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	102	14	0	116	0	11	0	0	11	0	32	30	0	62	0	0	189	0	0
15:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	101	20	0	121	0	6	0	0	6	0	27	21	0	48	0	0	175	0	0
15:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	111	10	0	121	0	2	0	0	2	0	29	18	0	47	0	0	170	0	0
15:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	150	15	0	165	0	6	0	0	6	0	38	27	0	65	0	0	236	0	0
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	164	9	1	174	0	8	0	0	8	0	43	19	0	62	0	0	244	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	129	12	0	141	0	2	0	0	2	0	32	32	0	64	0	0	207	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	106	4	0	110	0	2	0	0	2	0	23	11	0	34	0	0	146	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	118	7	0	125	0	1	0	0	1	0	31	14	0	45	0	0	171	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	91	6	0	97	0	0	0	0	0	0	30	13	0	43	0	0	140	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	129	9	0	138	0	2	0	0	2	0	26	15	0	41	0	0	181	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	102	4	0	106	0	1	0	0	1	0	15	13	0	28	0	0	135	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	103	3	0	106	0	0	0	0	0	0	30	12	0	42	0	0	148	0	0
TOTAL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1726	127	1	1854	0	43	0	0	43	0	408	260	0	668	0	0	2565	0	0
PM Peak	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	517	32	1	550	0	13	0	0	13	0	129	76	0	205	0	0	768	0	0

TTM Reference: 17SYD0166 Location: Great Western Hwy & Tarlington PI Suburb: Prospect Date: Tuesday, 12 December 2017 Survey Duration: 0700-1000 & 1500-1900 Weather: Fine Notes:

AM Peak: 0715-0815 PM Peak: 1600-1700

Time					Weste	rn App	oroach:	Great	t Weste	rn Hwy	у							S	outher	n Appi	roach:	Tarlin	gton F	N									East	ern App	proach:	Great	Wester	1 Hwy				
15 min		5	Straigh	t				Right	t			TOTAL		Durk			Left					Right				TOTAL	0	Deale			Left				S	Straigh	t			TOTAL	0	Deale
time start	Light	Heavy	Bus	Total	Cycle	Light	Heavy	Bus	Total	Cycle	U Turn	TOTAL	Cycle	Peds	Light	Heavy	Bus	Total	Cycle	Light	Heavy	Bus	Total	Cycle	UTurn	TOTAL	Cycle	Peds	Light	Heavy	Bus	Total	Cycle	Light	Heavy	Bus	Total	Cycle	UTum	TOTAL	_ Cycle	Peds
7:00	418	16	0	434	0	0	0	0	0	0	0	434	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	225	26	0	251	0	0	251	0	0
7:15	397	18	3	418	0	0	0	0	0	0	1	419	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	279	30	0	309	0	0	309	0	0
7:30	377	24	0	401	0	0	0	0	0	0	0	401	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	307	35	0	342	0	0	342	0	0
7:45	408	12	2	422	0	0	0	0	0	0	1	423	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	345	18	1	364	0	0	364	0	0
8:00	399	14	0	413	0	0	0	0	0	0	0	413	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	325	31	2	358	0	0	358	0	0
8:15	389	17	3	409	0	1	0	0	1	0	0	410	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	278	20	0	298	0	0	298	0	0
8:30	391	18	4	413	0	1	0	0	1	0	0	414	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	318	24	2	344	0	0	344	0	0
8:45	371	15	2	388	0	0	0	0	0	0	0	388	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	294	20	1	315	0	0	315	0	0
9:00	255	32	0	287	0	0	0	0	0	0	0	287	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	266	21	0	287	0	0	287	0	0
9:15	254	31	0	285	0	0	0	0	0	0	0	285	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	283	19	0	302	0	0	302	0	0
9:30	219	19	0	238	0	0	0	0	0	0	0	238	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	233	29	0	262	0	0	262	0	0
9:45	208	25	0	233	0	0	0	0	0	0	0	233	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	217	23	0	240	0	0	240	0	0
TOTAL	4086	241	14	4341	0	2	0	0	2	0	2	4345	0	0	2	0	0	2	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	3370	296	6	3672	0	0	3672	0	0
AM Peak	1581	68	5	1654	0	0	0	0	0	0	2	1656	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1256	114	3	1373	0	0	1373	0	0
				-	-		-	-	-	-	-	-	-	-		-	-					-	-	-	· · · · ·	-	-			-					-		-	-			·	
15:00	232	22	2	256	0	0	0	0	0	0	0	256	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	453	14	0	467	0	0	467	0	0
15:15	238	23	2	263	0	0	0	0	0	0	0	263	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	482	20	0	502	0	0	502	0	0
15:30	235	13	0	248	0	0	0	0	0	0	0	248	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	583	32	1	616	0	1	618	0	0
15:45	265	18	2	285	0	0	0	0	0	0	0	285	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	551	32	1	584	0	0	584	0	0
16:00	277	24	1	302	0	0	0	0	0	0	1	303	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	614	28	0	642	0	0	643	0	0
16:15	270	11	0	281	0	0	0	0	0	0	0	281	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	635	33	0	668	0	0	669	0	0
16:30	283	7	1	291	0	1	0	0	1	0	1	293	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	2	0	0	2	0	607	32	0	639	0	0	641	0	0
16:45	281	9	1	291	0	0	0	0	0	0	2	293	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	569	29	0	598	0	0	598	0	0
17:00	262	3	0	265	0	0	0	0	0	0	0	265	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	592	26	1	619	0	0	620	0	0
17:15	240	10	0	250	0	0	0	0	0	0	0	250	0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0	1	0	1	0	617	21	0	638	0	0	639	0	0
17:30	267	5	0	272	0	0	0	0	0	0	0	272	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	559	36	1	596	0	0	597	0	0
17:45	224	12	0	236	0	0	0	0	0	0	1	237	0	0	1	0	0	1	0	0	0	0	0	0	0	1	0	0	1	0	0	1	0	545	22	0	567	0	0	568	0	0
18:00	214	6	2	222	0	0	0	0	0	0	2	224	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	504	16	0	520	0	0	520	0	0
18:15	208	6	0	214	0	0	0	0	0	0	0	214	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	365	14	0	379	0	0	379	0	0
18:30	169	8	0	177	0	0	0	0	0	0	0	177	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	311	7	0	318	0	0	318	0	0
18:45	204	7	0	211	0	0	0	0	0	0	1	212	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	221	12	0	233	0	0	234	0	0
TOTAL	3869	184	11	4064	0	1	0	0	1	0	8	4073	0	0	3	0	0	3	0	0	1	0	1	0	0	4	0	0	9	1	0	10	0	8208	374	4	8586	0	1	8597	0	0
PM Peak	1111	51	3	1165	0	1	0	0	1	0	4	1170	0	0	2	0	0	2	0	0	0	0	0	0	0	2	0	0	4	0	0	4	0	2425	122	0	2547	0	0	2551	0	0

Tuesday, 12 D	ecemb	er 20:		1523	Tuesda	ay 12	12 17	'.txt			
Appr			tecto	r(s).							
Approac		1	2	3	4	5	6	7	8	13	
FF											
00:15 Approac	h 1	7	21	8	10	1	17	10	27	5	106
00:30 Approac		8	14	7	11	4	17	8	24	6	99
00:45 Approac		12	20	7	7	2	7	14	28	8	105
01:00 Approac		4	15	4	7	4	9	10	14	6	73
01:15 Approac		9	16	17	4	4	10	8	12	3	83
01:30 Approac		1	5	8	16	5	10	9	12	7	73
01:45 Approac		7	6	9	9	1	6	6	10	4	58
02:00 Approac		5	8	4	7	5	5	8	10	5	57
02:15 Approac		1	8	8	6	6	4	8	13	2	56
02:30 Approac		4	3	6	12	1	10	5	6	4	51
02:45 Approac		9	4	4	9	4	10	2	12	4	58
03:00 Approac		2	6	6	9	4	10	3	10	2	52
03:15 Approac		2	6	4	18	4	11	3	5	5	58
03:30 Approac		3	10	5	28	2		7	9	8	81
03:45 Approac		4	7	7	36	6	17	5	5	17	104
04:00 Approac		. 9	, 12	5	43	6	15	5	11	16	122
04:15 Approac		6	7	9	31	3	10	4	8	11	89
04:30 Approac		6	13	10	51	6	18	7	10	20	141
04:45 Approac		11	14	18	92	11	40	8	14	23	231
05:00 Approac		13	15	10	90	18	29	10	24	33	242
05:15 Approac		19	41	15	103	13	30	9	15	27	272
05:30 Approac		29	45	25	136	14	50	15	26	35	375
05:45 Approac		36	4J 50	37	168	23	58	27	20 49	66	514
06:00 Approac		43	41	34	169	32	66	28	54	74	541
06:15 Approac		55	68	36	126	25	49	32	42	63	496
06:30 Approac		63	72	42	137	35	72	50	70	89	630
06:45 Approac		66	62	42 50	146	33	68	60	85	82	652
07:00 Approac		78	64	36	145	27	59	62	81	67	619
07:15 Approac		62	69	58	140	18	62	57	75	75	616
07:30 Approac		70	76	49	125	28	68	53	84	95	648
07:45 Approac		75	81	33	127	20	78	57	74	86	640
08:00 Approac		63	73	54	129	29	69	69	101	88	675
08:15 Approac		68	75	58	123	36	72	61	96	76	665
08:30 Approac		61	79	47	105	30	61	46	73	72	574
08:45 Approac		67	78	38	122	30	67	-0 60	88	86	636
09:00 Approac		63	68	41	144	28	59	45	69	67	584
09:15 Approac		51	71	38	114	30	64	46	74	74	562
09:30 Approac		50	61	52	131	27	67	32	60	53	533
09:45 Approac		45	64	53	125	22	72	38	68	59	546
10:00 Approac		41	63	47	116	29	66	36	59	74	531
10:15 Approac		29	65		104	23	60	34	55	61	495
10:30 Approac		49	75	55	111	26	62	41	68	66	553
10:45 Approac		49 52	72	49	89	28	54	40	61	50	495
11:00 Approac		46	61	49 45	108	20 30	54	40 45	59	74	495 519
11:15 Approac		40 41	71	4J 50	100	32	56	36	58	51	496
11:30 Approac		54	77	43	100	30	68	39	58	64	533
11:45 Approac		52	74	45 45	115	28	67	59 44	58 71	64 54	550
12:00 Approac		52	74	43 58	98	28	57	44 36	59	52	514
	エ	22	, ,	50	50	21		50	22	22	714

				4523 [·]	Tuesda	av 12	12 17	.txt				
12:15 Approach	1	51	75	51	108	25	57	32	48	52	499	
12:30 Approach	1	71	81	55	101	36	64	31	59	60	558	
12:45 Approach	1	49	68	55	129	21	54	36	54	53	519	
13:00 Approach	1	49	66	45	129	26	63	38	62	54	532	
13:15 Approach	1	47	74	69	113	31	68	38	64	56	560	
13:30 Approach	1	54	78	74	116	27	81	39	61	63	593	
13:45 Approach	1	54	69	61	116	42	67	44	71	61	585	
14:00 Approach	1	50	65	70	132	40	70	36	62	68	593	
14:15 Approach	1	72	91	85	118	34	70	47	73	57	647	
14:30 Approach	1	77	91	67	100	35	83	50	66	54	623	
14:45 Approach	1	75	86	93	116	33	76	50	85	68	682	
15:00 Approach	1	78	106	98	105	40	76	55	67	49	674	
15:15 Approach	1	69	93	81	112	37	69	49	79	42	631	
15:30 Approach	1	78	98	97	111	49	75	45	69	45	667	
15:45 Approach	1	77	112	81	101	40	77	40	57	28	613	
16:00 Approach	1	82	87	82	117	57	92	38	64	40	659	
16:15 Approach	1	96	115	105	108	34	87	48	58	43	694	
16:30 Approach	1	84	112	95	121	47	80	41	72	48	700	
16:45 Approach	1	97	110	75	92	51	88	69	74	45	701	
17:00 Approach	1	72	108	80	98	50	90	70	76	48	692	
17:15 Approach	1	77	99	75	99	51	95	54	73	47	670	
17:30 Approach	1	92	96	80	76	59	104	68	85	37	697	
17:45 Approach	1	86	114	68	94	46	91	63	88	47	697	
18:00 Approach	1	93	106	66	102	50	83	61	79	36	676	
18:15 Approach	1	78	86	56	85	42	65	66	81	56	615	
18:30 Approach	1	62	63	39	88	45	89	72	84	31	573	
18:45 Approach	1	39	47	44	62	20	82	66	87	28	475	
19:00 Approach	1	44	51	28	62	28	64	65	79	36	457	
19:15 Approach	1	47	56	37	59	28	55	43	71	13	409	
19:30 Approach	1	24	39	20	53	20	68	38	58	16	337	
19:45 Approach	1	24	29	18	39	11	50	29	48	22	271	
20:00 Approach	1	22	35	16	42	14	40	26	52	12	259	
20:15 Approach	1	18	37	28	36	22	48	39	61	14	303	
20:30 Approach	1	18	24	20	37	14	63	35	49	8	268	
20:45 Approach	1	10	18	20	33	18	53	33	57	10	256	
21:00 Approach	1	14	15	24	39	8	52	27	56	12	243	
21:15 Approach	1	14	28	13	30	10	32	25	39	10	243	
21:30 Approach	1	20	26	11	43	22	51	32	41	13	259	
21:45 Approach	1	10	20 19	15	39	17	48	27	51	15	241	
22:00 Approach	1	15	27	22	34	13	45	24	40	7	227	
22:15 Approach	1	16	24	23	31	15	31	24	43	5	216	
	1	19	24	13	23	8	27	26	45 45	5	186	
22:30 Approach	1	16	20 19	10	30	9	38	20	43 47	17	206	
22:45 Approach	1	14	23	18	27	6	23	18	37	5	200 171	
23:00 Approach	1	14	25	26	19	5	22	10	35	9	169	
23:15 Approach												
23:30 Approach	1 1	15 11	13 16	15 12	20 18	11 2	20 8	20 16	33 25	5 11	152	
23:45 Approach			16	13							120	
24:00 Approach	1	9	9	7	10	0	13	12	41	8	109	
Approach 1 AM	peak	<	2628	07:15	- 08	:15	PM r	beak	275	37 16.	00 - 17:0	0
	39296		2020	U J	00	• • •	1.1.1	Cur	210	, <u>1</u> 0.	JU 17.0	5
Jurry rocar .		-										

H

TTM Data

TTM Reference: 175YD0166 Location: Prospect Hwy & Ponds Rd Suburb: Prospect Date: Saturday, 9 December 2017 Survey Duration: 1000-1300 Weather: Fine Notes:

C	D
ē	2
ž	
S.	2
T	-
	5
C	2
C	b
õ	1
~	٩
T	
	2
-	
0	C
0	
ñ	۲
ц	
5	
۰C	2
ć	
-	í
-	
-	

1200-1300	
Peak:	
Noon	

	Al Carlo Dode	20	0 9	0 0	0 0 8	2 0	7 0 0	0 0 6	。 。 。	0 0 0	2 0	2 0	0 0 9	4 0 0	0 0 90	0 0 9	•
	TOTAL		256	232	263	242	227	239	260	240	292	255	246	254	3006	996	1
	L I	_	0	0	0	0	0	0	0	0	0	0	0	0	•	0	•
~		Cycle	0	0	0	0	0	0	0	0	0	0	0	0	•	0	•
ect Hw		Total	242	218	246	222	212	219	236	226	271	233	224	239	2788	893	1000
Prosp	Straigh	Bus	0	-	0	0	0	0	0	0	0	0	0	0	-	0	,
roach:		Heavy	13	4	6	17	9	10	16	16	13	12	9	12	148	52	9
Northern Approach: Prospect Hwy		Light	229	203	237	205	202	209	220	210	258	221	218	227	2639	841	100
North		Cycle	0	•	0	0	0	0	0	0	0	0	0	0	0	0	•
		Total	14	14	17	20	15	20	24	4	21	22	22	15	218	73	0
	Left	y Bus	0	0	0	0	0	0	0	0	0	0	0	0	•	0	•
		tt Heavy	~	-	•	0	0	-	-	•	0	m	0	0	8	~	•
	<u>_</u>	Light	12	13	17	20	15	19	23	4	21	19	22	15	210	71	1
	C.mlo Dode		0 0	0 0	0 0	0 0	0 0	0	0	0	0	0	0	0	• 0	0	•
		1	55 0	53	51	59 0	61	67 0	51	63	52 (76 0	99	53	707 0	242 0	
	UT UT		•	•	•	•	•	•	•	•	•	0	•	•	0	0	•
		Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
Ba		Total	12	9	9	24	13	15	9	15	÷	17	12	20	169	53	
Eastern Approach: Ponds Rd	Right	Bus	0	0	0	0	0	0	0	0	0	0	0	0	•	0	,
proach:		Heavy	0	0	0	0	-	N	-	0	0	0	-	0	ß	4	
ern App		e Light	4	₽ 	9	24	4	13	6	15	=	17	=	20	164	49	1
East		al Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	±	s Total	43	43	41	35	48	52	41	48	41	59	54	33	538	189	-
	Left	avy Bus	0	0	0	•	0	•	0	•	0	•	4	•	0	0	•
		-ight Heavy	41 2	38 5	38	35 0	48 0	46 6	39 2	44	41 C	56 3	50 4	33 0	509 29	177 12	1
	Dode	_	0	0	e 0	。 0	0	0	e 0	0	0	0	0	e 0	0	-	•
	م م		•	•	0	0	•	0	0	0	0	0	0	0	0	0	
	TOTAL	1	217	217	217	262	241	271	245	282	279	291	267	264	3053	1039	
	E I	5	0	0	0	0	0	0	0	0	0	0	0	0	•	0	,
>		Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•
ect Hw		Total	2	7	2	2	÷	10	~	9	÷	6	9	2	94	88	;
: Prosp	Right	y Bus	0	0	0	0	0	0	0	0	0	0	0	0	•	0	•
proach:		t Heavy	0	0	0	0	0	0	0	-	0	0	0	N	m	-	•
Southern Approach: Prospect Hwy		le Light	~	~	ß	~	=	9	~	6	5	റ	9	ო	91	37	ć
South		al Cycle	0	0 5	2	0	。 。	0	0 8	2	0	5	7 0	0	06	-	•
	ght	s Total	210	215	212	255	230	261	238	272	268	282	257	259	2959	1001	10001
	Straight	avy Bus	0	0	0	0	0	•	0	-	0	0	0	0	-	 +	
		ht Heavy	10	13	12	17 8	5 15	14	6	55 16	6 12	6 16	15 15	10	08 150	16 54	0
	_	art Light	200	202	200	247	215	247	229	255	256	266	242	249	2808	ak 946	1010
Time	5 min	ime start	00:01	10:15	0:30	10:45	11:00	11:15	11:30	11:45	12:00	12:15	12:30	12:45	TOTAL	AM Peak	

Location: Prospect Hwy & M4 Eastbound Ramps Suburb: Prospect Date: Saturday, 9 December 2017 Survey Duration: 1000-1300 TTM Reference: 17SYD0166 Weather: Fine

Notes:

1200-1300	
Peak:	
Noon	

Peds

Cycle

TOTAL

U Turn

Total Cycle

Heavy ÷ ~

Light

Cycle •

Bus Total

Heavy ω \sim ß ÷ = 8 0 ი ო 4 35 35 35

Light

Cycle 0 0 • •

Total

Bus Left

Heavy

ight

Peds

Cycle

TOTAL

U Turn

Total Cycle

Heavy

Total Cycle Light

Heavy

Light

Cycle

Total

Bus Left -

Heavy

Light

Time

15 m in

ო

time start 10:00 10:15

÷ ~

Right Bus

Northern Approach: Prospect Hwy

Straight Bus

8 1 ω 9 1

c

126 154 133 133 138 138

N ი

142 160 140

--

 0 0 0 0 0 0

o o o o o o o

ი

Straight

Right Bus

Southern Approach: Prospect Hwy

-

22 21 21 21

131 145 159 173 185

~

o o o

o o o

258 254 254 254 263 269 277 277 277 277 277 274 274 277 274 1156

159

o o o

ω

ē

153

108

648

1760

•

÷

c

158

> ÷

109 123 123 112 110 110 1125 1125

ო N ß ß

10:45 11:00 11:15

10:30

11:30

11:45 12:00 12:15 12:30

ი თ ß

o 0 •

÷

24 24 24 24

10 QI

22 15

-ო ო

123 154 155 173 173 175 175 175 175 175 175 175 175 175 71 184 781 781

•

N N N N

•

0 0 0 0 0 0 0 0 0 **0** 0 0

13 22 8

• •

പറ

192 229 204 186 2096 2096

o o o o

119

29 29

1339 432 453

N 0

50 17 15

AM Peak PM Peak

12:45 TOTAL

• o o

3 00

22 260 71 118

9 9 54

• •

 166
 165

 167
 173

 173
 189

 210
 211

 182
 211

 236
 236

 235
 235

 236
 235

 238
 238

 238
 238

 238
 238

 238
 238

 238
 238

 238
 238

 238
 238

 238
 238

 238
 238

 238
 238

 238
 238

 238
 238

 238
 238

 238
 238

 238
 238

 238
 238

 238
 238

 238
 238

 238
 238

 238
 238

 238
 238

ß

Location: Prospect Hwy & M4 Eastbound Ramps Suburb: Prospect Date: Saturday, 9 December 2017 Survey Duration: 1000-1300 TTM Reference: 17SYD0166 Weather: Fine Notes:

AM Peak: 1100-1200 PM Peak: 1200-1300

Peds

Cycle

TOTAL

116

0 0 0 0 **0** 0

• • • • • • • • • • • • • • • •

 81
 111

 111
 88
 88

 88
 88
 88

 80
 106
 104

 122
 123
 123

 130
 130
 130

 1277
 1277
 1277

 451
 420
 420

-

-

ttm

TTM Data

TTM Reference: 17SYD0166 Location: Great Western Hwy & Tarlington PI Suburb: Prospect Date: Saturday, 9 December 2017 Survey Duration: 1000-1300 Weather: Fine Notes:

Noon Peak: 1200-1300

	Dode		0	0	0	0	0	0	0	0	0	0	0	0	•	0	c
	0000	Š	•	•	0	0	•	•	0	0	•	0	•	•	•	0	C
	TOTAL		263	232	253	248	277	293	269	280	316	277	298	297	3303	1119	1188
	L T		0	0	0	0	0	0	0	0	0	0	0	0	•	0	c
n Hwy		Cycle	0	0	0	0	0	0	0	0	0	0	0	0	•	0	c
Eastern Approach: Great Western Hwy	_	Total	263	231	253	248	277	293	269	279	315	277	298	297	3300	1118	1187
Great	Straight	Bus	0	0	0	0	0	0	0	0	0	0	0	0	•	0	c
roach:		Heavy	13	9	ω	9	4	42	6	12	2	9	ω	2	96	37	26
m App		Light	250	225	245	242	273	281	260	267	310	271	290	290	3204	1081	1161
Easte		Cycle	0	0	0	0	0	0	0	0	0	0	0	0	•	0	С
		Total	•	-	•	•	•	•	•	-	-	0	•	•	e	-	-
	Left	Bus	0	0	0	0	0	0	0	0	0	0	0	0	•	0	c
		Heavy	0	0	0	0	0	0	0	0	0	0	0	0	•	0	c
		Light	0	-	0	0	0	0	0	-	-	0	0	0	e	-	
	Dode		0	0	0	0	0	0	0	0	0	0	0	0	•	0	c
	ç		•	•	•	•	•	•	•	•	•	0	•	•	•	0	C
	TOTAL		•	-	•	•	•	•	•	-	-	•	•	•	e	-	-
	L T I		0	0	0	0	0	0	0	0	0	0	0	0	•	0	c
-		Cycle	0	0	0	0	0	0	0	0	0	0	0	0	•	0	С
ngton F	_	Total	•	-	•	•	•	•	•	•	•	•	•	•	-	0	c
Southern Approach: Tarlington PI	Right	y Bus	0	0	0	0	0	0	0	0	0	0	0	0	•	0	c
proach		t Heavy	0	0	0	0	0	0	0	0	0	0	0	0	•	0	c
iern Ap		le Light	0	-	0	0	0	0	0	•	0	0	0	0	-	0	C
South		al Cycle	0	0	0	0	0	0	0	0	0	0	0	0	•	0	C
	Left	Bus Total	0	•	• 0	•	•	• 0	• 0	0	•	0	0 0	• 0	0	-	-
	ت	Heavy Bu	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0
		ight He	0	0	0	0	0	0	0	-	-	0	0	0	0	-	-
	Dode	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	С
	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			220	201	200	234	235	221	237	235	198	244	213	239	2677	928	894
	11TINN T(0	~	~	-	0	0	•	~		-	2	0	10 2	0,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
wy		Cycle	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
stern H		Total C	•	•	•	•	•	2	•	•	•	0	•	•	2	2	0
eat We	Right	Bus T	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0
Western Approach: Great Western Hwy	æ	Heavy B	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0
Approa		Light He	0	0	0	0	0	2	0	0	0	0	0	0	2	2	0
restern		Cycle Li	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3		Total C	220	199	198	233	235	219	237	233	198	243	211	239	2665	924	891
	Straight	Bus To	-	19	1	0 3	- -	1	0	0	4	8 2	5	0 3	15 26	2 92	12 89
	Str	Heavy Bu	7	12	8	6	-	с С	2	5	е 2	+	0	0 8	59 1	16	7
		-ight He	212	187 1	190	224	233	215	230	228	191	234	211	236	2591 5	906 1	872
ø	ŗ	time start Lig															PM Peak 8
Time	l5 min	e st	10:00	10:15	10:30	10:45	11:00	11:15	11:30	11:45	12:00	12:15	12:30	12:45	TOTAL	AM Peak	Pe

<u> </u>					523 Sa	aturda	ay 09	12 1	7.txt			
Saturo	day, 09 De											
	Approa				r(s).		-	~	_	•	4.2	
	Approach	1	1	2	3	4	5	6	7	8	13	
00:15	Approach	1	14	15	12	24	7	17	16	57	7	169
	Approach	1	15	16	8	15	7	26	19	48	8	162
	Approach	1	14	16	6	9	7	23	17	49	13	154
	Approach	1	8	11	12	6	5	18	13	24	4	101
	Approach	1	5	11	7	6	2	8	19	23	4	85
	Approach	1	14	9	4	9	2	10	12	17	6	83
	Approach	1	5	7	3	7	2	10	6	21	4	65
	Approach	1	3	10	2	5	1	10	5	24	1	61
	Approach	1	2	12	5	7	7	16	5	13	6	73
	Approach	1	4	3	3	5	3	6	1	24	2	51
	Approach	1	3	5	4	14	2	6	ō	21	5	60
	Approach	1	2	6	4	5	0	6	3	19	3	48
	Approach	1	ē	6	3	10	4	9	1	19	2	54
	Approach	1	1	7	2	19	3	9	2	13	8	64
	Approach	1	5	, 6	1	36	9	11	5	16	11	100
	Approach	1	4	5	9	20	4	6	9	12	11	80
	Approach	1	7	10	4	13	2	9	3	13	5	66
	Approach	1	, 7	9	9	17	4	14	8	10	11	89
	Approach	1	5	12	13	37	0	20	8	13	14	122
	Approach	1	2	6	11	34	9	25	4	13	7	122
	Approach	1	9	10	4	32	3	21	4	12	6	101
	Approach	1	11	9	16	46	5	16	11	18	20	152
		1	14	20	9	40 90	16	41	10	25	26	251
	Approach Approach	1	13	20 16	6	72	14	27	18	31	37	231
	Approach	1	26	30	25	59	15	32	16	24	18	245
	Approach	1	20	32	14	55	12	33	23	24 31	15	243
	Approach	1	30	31	14	54	16	42	2 <i>5</i> 30	67	24	244 309
	Approach	1	32	37	16	53	13	44	34	41	24	290
	Approach	1	17	25	17	37	18	44	31	41	23	250
	Approach	1	16	30	13	42	16	39	28	4J 34	26	244
		1	22	29	14	42 61	28	59 54	28 27	54 51	26	312
	Approach	1	19	29 27	22	63	28 18	42	31	52	20 17	291
	Approach Approach	1	29	38	18	48	13	42 53	36	52	19	306
		1	30	30	21	48 45	24	65	38	58	22	333
	Approach Approach	1	31	29	21	4J 52	24 17	57	31	58	18	314
	Approach	1	24	29 37	16	61	22	51	35	63	22	331
	Approach	1	24	36	20	71	20	48	32	55	38	344
	Approach	1	35	33	26	59	20	48 54	36	56	24	344
		1	32	39	23	70	18	71	37	48	24 29	367
	Approach	1	25	33	17	69	30	64	27	48 49	37	351
	Approach		33				29	78	48		34	412
	Approach	1 1	29	29 41	30 26	84 71	29 34	78 62	48 34	47 44	54 23	412 364
	Approach											
	Approach	1	33 26	41 24	22 27	66 52	23	82 66	38 52	59 72	33 21	397 207
	Approach	1	26	34 20	27 24	52 54	36 20	66 91	52 47	73 66	21 21	387 412
	Approach	1	39 26	30 25	34 20	54	30 25	81 01		66 77	31	412
	Approach	1	26	35	29 21	55 62	35	81 66	53	77 69	38	429
	Approach	1	22	43 22	21	62	29	66 74	39 57	68 70	30 26	380
17:00	Approach	1	25	33	29	83	35	74	57	78	26	440

			4	523 Sa	aturda	av 09	12 17	7.txt			
12:15 Approach	1	40	57	50	70	29	81	43	61	14	445
12:30 Approach	1	36	39	33	80	33	90	51	80	25	467
12:45 Approach	1	30	46	21	69	30	86	51	75	24	432
13:00 Approach	1	33	39	27	63	33	72	39	62	24	392
13:15 Approach	1	31	49	33	47	30	76	54	71	12	403
13:30 Approach	1	25	28	29	50	37	81	46	63	19	378
13:45 Approach	1	31	27	25	63	30	73	47	69	14	379
14:00 Approach	1	24	32	20	47	28	69	65	62	23	370
14:15 Approach	1	31	37	29	55	26	65	50	78	16	387
14:30 Approach	1	40	45	27	62	32	73	50	72	22	423
14:45 Approach	1	44	44	14	65	22	71	49	80	20	409
15:00 Approach	1	34	55	19	57	25	67	54	70	22	403
15:15 Approach	1	31	31	14	50	26	65	42	74	24	357
15:30 Approach	1	24	39	13	59	31	59	48	71	21	365
15:45 Approach	1	33	45	25	52	25	77	53	73	23	406
16:00 Approach	1	22	43	15	50	28	64	51	73	24	370
16:15 Approach	1	29	34	22	61	24	63	41	53	19	346
16:30 Approach	1	29	39	16	46	24	79	48	66	19	366
16:45 Approach	1	36	33	16	47	13	65	35	68	18	331
17:00 Approach	1	26	50	17	4 7 59	16	69	44	61	14	356
	1	20	33	24	59	38	96	44 44	64	14	389
17:15 Approach											
17:30 Approach	1	30	47	16	55	20	71	44	75	14	372
17:45 Approach	1	31	47	12	66	26	68	39	58	14	361
18:00 Approach	1	33	37	18	68	16	60	42	70	8	352
18:15 Approach	1	25	28	22	48	11	55	43	69	10	311
18:30 Approach	1	18	27	18	51	19	73	39	68	19	332
18:45 Approach	1	25	29	13	54	17	48	39	60	8	293
19:00 Approach	1	19	28	12	32	21	40	41	51	20	264
19:15 Approach	1	24	45	11	36	16	51	34	60	12	289
19:30 Approach	1	24	22	12	26	15	50	33	65	7	254
19:45 Approach	1	23	20	9	38	7	38	31	44	7	217
20:00 Approach	1	12	23	9	30	9	41	39	53	8	224
20:15 Approach	1	17	20	6	26	6	30	25	44	3	177
20:30 Approach	1	17	24	6	33	12	36	24	54	11	217
20:45 Approach	1	22	26	8	23	13	28	32	47	13	212
21:00 Approach	1	13	9	0	17	11	33	21	51	11	166
21:15 Approach	1	21	13	7	30	7	34	24	42	7	185
21:30 Approach	1	16	14	4	13	4	36	26	47	7	167
21:45 Approach	1	11	11	5	30	14	42	27	35	8	183
22:00 Approach	1	9	16	2	20	11	38	24	46	11	177
22:15 Approach	1	20	12	5	17	12	36	23	53	11	189
22:30 Approach	1	22	26	8	31	10	44	25	62	29	257
22:45 Approach	1	22	16	6	30	7	38	34	67	24	244
23:00 Approach	1	16	18	7	16	9	35	30	67	11	209
23:15 Approach	1	12	16	5	16	10	41	31	63	16	210
23:30 Approach	1	17	11	4	19	8	31	18	41	10	159
23:45 Approach	1	6	8	9	18	11	36	30	66	5	189
24:00 Approach	1	9	8	2	13	10	32	27	50	4	155
11			-								
Approach 1 AM	peak		1661	11:00	- 12:	:00	PM p	beak	173	36 12:	00 - 13:00
	5175						r			-	
,											

Appendix C

SIDRA INTERSECTION Results

V Site: 1 [Prospect Highway / Ponds Road - Tue (AM)]

Giveway / Yield (Two-Way)

Move	ment	Performa	nce - \	/ehicle	S								
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective A Stop Rate	Average Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Prosp	ect Highwa	y										
2	T1	1557	9.3	1557	9.3	0.846	0.1	LOS A	0.0	0.0	0.00	0.00	59.1
3	R2	67	4.7	67	4.7	0.103	9.9	LOS A	0.4	2.9	0.65	0.85	44.7
Appro	ach	1624	9.1	1624	9.1	0.846	0.5	NA	0.4	2.9	0.03	0.04	58.3
East:	Ponds I	Road											
4	L2	292	6.9	292	6.9	0.934	37.5	LOS C	6.3	46.9	0.74	1.46	33.2
6	R2	31	24.1	31	24.1	0.126	22.0	LOS B	0.4	3.5	0.80	0.94	49.4
Appro	ach	322	8.5	322	8.5	0.934	36.1	LOS C	6.3	46.9	0.75	1.41	35.2
North:	Prospe	ect Highwa	у										
7	L2	22	23.8	22	23.8	0.424	5.9	LOS A	17.8	139.1	0.00	0.02	57.0
8	T1	736	13.2	736	13.2	0.424	0.1	LOS A	17.8	139.1	0.00	0.02	59.6
Appro	ach	758	13.5	758	13.5	0.424	0.2	NA	17.8	139.1	0.00	0.02	59.4
All Ve	hicles	2704	10.2	2704	10.2	0.934	4.7	NA	17.8	139.1	0.11	0.19	54.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 6.4 % Number of Iterations: 10 (maximum specified: 10)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 29 January 2018 11:43:43 AM

Site: 2 [Prospect Highway / M4 Western Motorway Eastbound - Tue (AM)]

Roundabout

Move	ement	Performa	nce - \	/ehicle	s								
Mov	OD	Demand				Deg.	Average	Level of		of Queue	Prop.	Effective	0
ID	Mov	Total	ΗV	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
South	East: P	rospect Hig	ghway										
23a	R1	1019	11.1	1019	11.1	0.408	7.8	LOS A	3.6	27.5	0.07	0.60	41.5
23b	R3	217	40.3	217	40.3	0.408	10.3	LOS A	3.4	28.0	0.07	0.61	50.3
23u	U	27	0.0	27	0.0	0.408	10.9	LOS A	3.4	28.0	0.07	0.61	40.9
Appro	ach	1263	15.8	1263	15.8	0.408	8.3	LOS A	3.6	28.0	0.07	0.60	44.3
North	Prospe	ect Highwa	у										
7	L2	291	12.0	291	12.0	0.983	48.4	LOS D	25.8	198.8	1.00	1.87	25.4
7a	L1	724	11.8	724	11.8	0.983	48.3	LOS D	25.8	198.8	1.00	1.87	6.9
9u	U	7	0.0	7	0.0	0.983	55.0	LOS D	25.8	198.8	1.00	1.87	6.9
Appro	ach	1022	11.7	1022	11.7	0.983	48.3	LOS D	25.8	198.8	1.00	1.87	14.0
South	West: N	/4 Western	Motor	way									
30a	L1	623	5.1	623	5.1	0.502	14.5	LOS B	5.0	36.2	0.91	0.81	55.8
32a	R1	2	0.0	2	0.0	0.502	19.4	LOS B	4.7	37.8	0.89	0.89	55.0
32	R2	228	22.6	228	22.6	0.502	21.9	LOS B	4.7	37.8	0.89	0.89	50.7
Appro	ach	854	9.7	854	9.7	0.502	16.5	LOS B	5.0	37.8	0.90	0.83	54.3
All Ve	hicles	3139	12.8	3139	12.8	0.983	23.6	LOS B	25.8	198.8	0.60	1.08	32.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 6.4 % Number of Iterations: 10 (maximum specified: 10)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: GTA CONSULTANTS | Processed: Monday, 29 January 2018 11:43:43 AM

Site: 3 [Prospect Highway / M4 Western Motorway Westbound - Tues (AM)]

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Move	ement l	Performa	nce - \	/ehicle	s								
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective / Stop Rate	Average Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Prosp	ect Highwa	ıy										
1	L2	204	16.0	204	16.0	0.345	28.9	LOS C	6.6	52.8	0.78	0.77	40.2
2	T1	612	16.0	612	16.0	0.812	31.0	LOS C	22.4	178.1	0.93	0.88	29.9
Appro	ach	816	16.0	816	16.0	0.812	30.5	LOS C	22.4	178.1	0.89	0.86	33.3
East:	M4 We	stern Moto	rway										
4	L2	363	16.0	363	16.0	0.450	9.9	LOS A	5.9	47.4	0.48	0.71	50.6
5	T1	6	16.0	6	16.0	0.845	44.4	LOS D	15.3	121.5	1.00	0.96	33.0
6	R2	620	16.0	620	16.0	0.845	50.2	LOS D	15.3	121.5	1.00	0.96	22.9
Appro	ach	989	16.0	989	16.0	0.845	35.3	LOS C	15.3	121.5	0.81	0.87	32.5
North	Prospe	ect Highwa	у										
8	T1	531	16.0	531	16.0	0.466	8.7	LOS A	11.7	93.4	0.55	0.49	50.6
9	R2	431	16.0	431	16.0	0.830	33.6	LOS C	6.6	52.8	1.00	0.93	33.9
Appro	ach	961	16.0	961	16.0	0.830	19.9	LOS B	11.7	93.4	0.75	0.69	41.4
All Ve	hicles	2766	16.0	2766	16.0	0.845	28.5	LOS C	22.4	178.1	0.81	0.80	35.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 6.4 % Number of Iterations: 10 (maximum specified: 10)

Move	Movement Performance - Pedestrians														
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped							
P1S	South Slip/Bypass Lane Crossing	53	11.8	LOS B	0.1	0.1	0.51	0.51							
P4	West Full Crossing	53	22.1	LOS C	0.1	0.1	0.70	0.70							
All Pe	destrians	105	16.9	LOS B			0.61	0.61							

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 29 January 2018 11:43:43 AM

Site: 4 [Great Western Highway / Tarlington Place - Tue (AM)]

Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							l I
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
East: (Croat Wa	veh/h stern Highwa	%	v/c	sec		veh	m		per veh	km/h
		0	,								
4a	L1	1	0.0	0.261	6.0	LOS A	0.0	0.0	0.00	0.00	70.5
5	T1	1445	8.5	0.261	0.0	LOS A	0.0	0.0	0.00	0.00	79.9
Appro	ach	1446	8.5	0.261	0.0	NA	0.0	0.0	0.00	0.00	79.9
West:	Great We	estern Highwa	ay								
11	T1	1741	4.4	0.230	0.0	LOS A	0.0	0.0	0.00	0.00	79.9
12b	R3	1	0.0	0.012	12.5	LOS A	0.0	0.2	0.77	0.90	43.1
12u	U	2	0.0	0.012	21.7	LOS B	0.0	0.2	0.77	0.90	46.8
Appro	ach	1744	4.4	0.230	0.1	NA	0.0	0.2	0.00	0.00	79.8
South	West: Tar	lington Place									
30b	L3	1	0.0	0.001	8.7	LOS A	0.0	0.0	0.46	0.58	54.7
32a	R1	1	0.0	0.001	6.2	LOS A	0.0	0.0	0.50	0.57	57.6
Appro	ach	2	0.0	0.001	7.4	LOS A	0.0	0.0	0.48	0.57	56.1
All Vel	hicles	3193	6.3	0.261	0.0	NA	0.0	0.2	0.00	0.00	79.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 15 January 2018 3:22:31 PM

V Site: 1 [Prospect Highway / Ponds Road - Tue (PM)]

Giveway / Yield (Two-Way)

Move	ment	Performa	nce - \	/ehicle	s								
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective A Stop S Rate	0
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Prosp	ect Highwa	ıy										
2	T1	1612	5.2	1611	5.2	0.854	0.1	LOS A	0.0	0.0	0.00	0.00	59.0
3	R2	71	7.5	70	7.5	0.104	9.6	LOS A	0.4	3.0	0.64	0.84	44.8
Appro	ach	1682	5.3	<mark>1681</mark> N	¹ 5.3	0.854	0.5	NA	0.4	3.0	0.03	0.04	58.3
East:	Ponds	Road											
4	L2	335	10.1	335	10.1	0.987	51.7	LOS D	10.9	83.0	0.72	1.80	26.5
6	R2	44	2.4	44	2.4	0.126	16.7	LOS B	0.4	3.1	0.73	0.91	53.9
Appro	ach	379	9.2	379	9.2	0.987	47.6	LOS D	10.9	83.0	0.72	1.70	29.6
North:	Prospe	ect Highwa	у										
7	L2	56	5.7	56	5.7	0.405	5.7	LOS A	39.2	304.2	0.00	0.05	57.6
8	T1	672	13.2	672	13.2	0.405	0.1	LOS A	39.2	304.2	0.00	0.05	59.0
Appro	ach	727	12.6	727	12.6	0.405	0.5	NA	39.2	304.2	0.00	0.05	58.8
All Ve	hicles	2788	7.7	2788	7.7	0.987	6.9	NA	39.2	304.2	0.11	0.26	51.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 9.6 % Number of Iterations: 10 (maximum specified: 10)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 29 January 2018 11:44:06 AM

Site: 2 [Prospect Highway / M4 Western Motorway Eastbound - Tue (PM)]

Roundabout

Move	ement	Performa	nce - \	/ehicle	s								
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	ΗV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
Oavith		veh/h		veh/h	%	v/c	sec		veh	m		per veh	km/h
		Prospect Hig											
23a	R1	1083	5.0	1083	5.0	0.462	7.8	LOS A	3.5	25.2	0.10	0.60	41.1
23b	R3	323	4.9	323	4.9	0.462	9.9	LOS A	3.5	25.2	0.10	0.63	51.1
23u	U	194	0.0	194	0.0	0.462	10.9	LOS A	3.5	25.2	0.10	0.63	39.9
Appro	ach	1600	4.3	1600	4.3	0.462	8.6	LOS A	3.5	25.4	0.10	0.61	44.5
North	: Prospe	ect Highway	/										
7	L2	172	11.7	172	11.7	1.036	102.1	LOS F	25.9	198.8	1.00	2.75	15.6
7a	L1	805	11.8	805	11.8	1.036	102.0	LOS F	25.9	198.8	1.00	2.75	3.5
9u	U	20	0.0	20	0.0	1.036	108.7	LOS F	25.9	198.8	1.00	2.75	3.5
Appro	ach	997	11.5	997	11.5	1.036	102.2	LOS F	25.9	198.8	1.00	2.75	6.1
South	West: N	M4 Western	Motor	way									
30a	L1	579	6.0	579	6.0	0.541	19.1	LOS B	6.3	46.3	0.99	0.94	49.2
32a	R1	14	0.0	14	0.0	0.541	22.7	LOS B	6.1	50.9	0.98	0.96	52.4
32	R2	216	37.1	216	37.1	0.541	26.2	LOS B	6.1	50.9	0.98	0.96	46.6
Appro	bach	808	14.2	808	14.2	0.541	21.0	LOS B	6.3	50.9	0.99	0.95	48.6
All Ve	hicles	3405	8.8	3405	8.8	1.036	38.9	LOS C	25.9	198.8	0.58	1.32	23.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 9.6 % Number of Iterations: 10 (maximum specified: 10)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: GTA CONSULTANTS | Processed: Monday, 29 January 2018 11:44:06 AM

Site: 3 [Prospect Highway / M4 Western Motorway Westbound - Tues (PM)]

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Move	ment	Performa	nce - \	/ehicle	s								
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Prosp	ect Highwa	ıy										
1	L2	374	5.0	374	5.0	0.521	27.8	LOS B	12.5	91.2	0.81	0.81	40.8
2	T1	836	5.0	836	5.0	0.922	41.3	LOS C	38.1	278.0	0.95	1.05	25.6
Appro	ach	1209	5.0	1209	5.0	0.922	37.1	LOS C	38.1	278.0	0.90	0.97	31.1
East:	M4 We	stern Motor	rway										
4	L2	194	5.0	194	5.0	0.204	7.2	LOS A	1.5	11.1	0.27	0.63	52.9
5	T1	5	5.0	5	5.0	0.894	52.3	LOS D	14.0	101.9	1.00	1.01	30.8
6	R2	529	5.0	529	5.0	0.894	57.9	LOS E	14.0	101.9	1.00	1.01	20.9
Appro	ach	728	5.0	728	5.0	0.894	44.4	LOS D	14.0	101.9	0.81	0.91	28.1
North:	Prospe	ect Highwa	у										
8	T1	441	5.0	431	5.0	0.326	5.6	LOS A	7.2	52.9	0.42	0.37	53.6
9	R2	555	5.0	542	5.0	0.929	45.9	LOS D	10.9	79.8	1.00	1.04	29.7
Appro	ach	996	5.0	<mark>973</mark> N	¹ 5.0	0.929	28.0	LOS B	10.9	79.8	0.74	0.74	37.0
All Ve	hicles	2934	5.0	<mark>2910</mark> N	¹ 5.0	0.929	35.9	LOS C	38.1	278.0	0.83	0.88	32.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 9.6 % Number of Iterations: 10 (maximum specified: 10)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Move	ment Performance - Pedest	rians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1S	South Slip/Bypass Lane Crossing	53	13.9	LOS B	0.1	0.1	0.56	0.56
P4	West Full Crossing	53	19.4	LOS B	0.1	0.1	0.66	0.66
All Pe	destrians	105	16.7	LOS B			0.61	0.61

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 29 January 2018 11:44:06 AM

Site: 4 [Great Western Highway / Tarlington Place - Tue (PM)]

Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
East: (Croat Wa	veh/h stern Highwa	%	v/c	sec		veh	m		per veh	km/h
		0	,								
4a	L1	4	0.0	0.473	6.0	LOS A	0.0	0.3	0.00	0.00	70.5
5	T1	2681	4.8	0.473	0.1	LOS A	0.0	0.3	0.00	0.00	79.8
Appro	ach	2685	4.8	0.473	0.1	NA	0.0	0.3	0.00	0.00	79.8
West:	Great We	estern Highwa	ay								
11	T1	1226	4.6	0.162	0.0	LOS A	0.0	0.0	0.00	0.00	79.9
12b	R3	1	0.0	0.033	15.2	LOS B	0.1	0.7	0.88	0.96	36.0
12u	U	4	0.0	0.033	32.3	LOS C	0.1	0.7	0.88	0.96	40.9
Appro	ach	1232	4.6	0.162	0.1	NA	0.1	0.7	0.00	0.00	79.6
South	West: Tar	lington Place									
30b	L3	2	0.0	0.001	8.4	LOS A	0.0	0.1	0.60	0.51	54.4
32a	R1	1	0.0	0.002	8.7	LOS A	0.0	0.0	0.69	0.66	55.0
Appro	ach	3	0.0	0.002	8.5	LOS A	0.0	0.1	0.63	0.56	54.6
All Vel	hicles	3920	4.7	0.473	0.1	NA	0.1	0.7	0.00	0.00	79.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 15 January 2018 3:22:32 PM

V Site: 1 [Prospect Highway / Ponds Road - Sat (noon)]

Giveway / Yield (Two-Way)

Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles		Prop. Queued	Effective A Stop 3 Rate	Average Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Prosp	ect Highwa	y										
2	T1	1122	5.0	1122	5.0	0.594	0.0	LOS A	0.0	0.0	0.00	0.00	59.8
3	R2	37	5.7	37	5.7	0.114	16.1	LOS B	0.4	2.8	0.83	0.93	39.5
Appro	ach	1159	5.0	1159	5.0	0.594	0.5	NA	0.4	2.8	0.03	0.03	58.8
East:	Ponds I	Road											
4	L2	197	3.7	197	3.7	0.867	37.7	LOS C	3.6	26.1	0.86	1.24	33.0
6	R2	63	1.7	63	1.7	0.402	36.5	LOS C	1.4	10.0	0.92	1.01	41.7
Appro	ach	260	3.2	260	3.2	0.867	37.4	LOS C	3.6	26.1	0.88	1.18	35.9
North	Prospe	ect Highwa	у										
7	L2	84	3.8	84	3.8	0.967	8.4	LOS A	0.0	0.0	0.00	0.04	52.7
8	T1	1018	4.4	1018	4.4	0.967	3.4	LOS A	0.0	0.0	0.00	0.04	53.4
Appro	ach	1102	4.4	1102	4.4	0.967	3.8	NA	0.0	0.0	0.00	0.04	53.3
All Ve	hicles	2521	4.6	2521	4.6	0.967	5.8	NA	3.6	26.1	0.10	0.15	52.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 3.4 % Number of Iterations: 10 (maximum specified: 10)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 29 January 2018 12:00:49 PM

Site: 2 [Prospect Highway / M4 Western Motorway Eastbound - Sat (noon)]

♦♦ Network: N101 [Saturday Network]

Roundabout

Move	Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed	
		veh/h		veh/h	%	v/c	sec		veh	m		per veh	km/h	
South	East: P	rospect Hig	Ihway											
23a	R1	854	3.7	854	3.7	0.357	8.0	LOS A	2.7	19.6	0.23	0.59	40.4	
23b	R3	140	11.3	140	11.3	0.357	10.3	LOS A	2.6	19.0	0.23	0.60	50.8	
23u	U	57	0.0	57	0.0	0.357	11.2	LOS A	2.6	19.0	0.23	0.60	39.7	
Appro	ach	1051	4.5	1051	4.5	0.357	8.5	LOS A	2.7	19.6	0.23	0.59	42.9	
North	Prospe	ect Highway	/											
7	L2	477	3.3	477	3.3	0.899	13.9	LOS A	25.3	182.6	1.00	0.94	42.4	
7a	L1	682	4.5	682	4.5	0.899	13.9	LOS A	25.3	182.6	1.00	0.94	18.4	
9u	U	58	0.0	58	0.0	0.899	20.9	LOS B	25.3	182.6	1.00	0.94	18.4	
Appro	ach	1217	3.8	1217	3.8	0.899	14.2	LOS A	25.3	182.6	1.00	0.94	33.2	
South	West: N	/14 Western	Motor	way										
30a	L1	384	6.0	384	6.0	0.286	10.7	LOS A	1.5	11.3	0.67	0.83	62.2	
32a	R1	2	0.0	2	0.0	0.286	14.5	LOS A	1.4	10.9	0.67	0.87	60.1	
32	R2	88	19.0	88	19.0	0.286	16.8	LOS B	1.4	10.9	0.67	0.87	59.6	
Appro	ach	475	8.4	475	8.4	0.286	11.9	LOS A	1.5	11.3	0.67	0.84	61.7	
All Ve	hicles	2742	4.9	2742	4.9	0.899	11.6	LOS A	25.3	182.6	0.65	0.79	41.7	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 3.4 % Number of Iterations: 10 (maximum specified: 10)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: GTA CONSULTANTS | Processed: Monday, 29 January 2018 12:00:49 PM

Site: 3 [Prospect Highway / M4 Western Motorway Westbound - Sat (noon)]

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Move	Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed	
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h	
South	: Prospe	ect Highway	/											
1	L2	138	5.0	138	5.0	0.288	34.2	LOS C	4.9	35.5	0.84	0.77	38.1	
2	T1	337	5.0	337	5.0	0.557	30.4	LOS C	10.8	78.7	0.89	0.74	30.2	
Appro	ach	475	5.0	475	5.0	0.557	31.5	LOS C	10.8	78.7	0.88	0.75	33.3	
East:	M4 Wes	stern Motory	way											
4	L2	92	5.0	92	5.0	0.083	6.8	LOS A	0.6	4.2	0.23	0.61	53.1	
5	T1	5	5.0	5	5.0	0.581	33.7	LOS C	9.7	70.8	0.94	0.82	36.5	
6	R2	481	5.0	481	5.0	0.581	39.3	LOS C	9.7	70.8	0.94	0.82	26.5	
Appro	ach	578	5.0	578	5.0	0.581	34.1	LOS C	9.7	70.8	0.83	0.79	30.8	
North:	Prospe	ect Highway	1											
8	T1	297	5.0	297	5.0	0.248	7.6	LOS A	5.6	40.8	0.46	0.40	51.6	
9	R2	478	5.0	478	5.0	0.571	23.1	LOS B	5.1	37.4	0.93	0.81	39.1	
Appro	ach	775	5.0	775	5.0	0.571	17.1	LOS B	5.6	40.8	0.75	0.65	43.1	
All Ve	hicles	1827	5.0	1827	5.0	0.581	26.2	LOS B	10.8	78.7	0.81	0.72	36.4	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 3.4 % Number of Iterations: 10 (maximum specified: 10)

Move	Movement Performance - Pedestrians														
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped							
P1S	South Slip/Bypass Lane Crossing	53	8.0	LOS A	0.1	0.1	0.42	0.42							
P4	West Full Crossing	53	28.1	LOS C	0.1	0.1	0.79	0.79							
All Pe	destrians	105	18.1	LOS B			0.61	0.61							

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay)

Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 29 January 2018 12:00:49 PM

Site: 4 [Great Western Highway / Tarlington Place - Sat (noon)]

Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles													
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average			
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
East: (Croat Wa	veh/h stern Highwa	%	v/c	sec		veh	m		per veh	km/h			
		0	,											
4a	L1	1	0.0	0.217	6.0	LOS A	0.0	0.0	0.00	0.00	70.5			
5	T1	1249	2.2	0.217	0.0	LOS A	0.0	0.0	0.00	0.00	79.9			
Appro	ach	1251	2.2	0.217	0.0	NA	0.0	0.0	0.00	0.00	79.9			
West:	Great We	estern Highwa	ау											
11	T1	938	2.1	0.122	0.0	LOS A	0.0	0.0	0.00	0.00	80.0			
12b	R3	1	0.0	0.013	10.9	LOS A	0.0	0.3	0.70	0.85	44.9			
12u	U	3	0.0	0.013	17.1	LOS B	0.0	0.3	0.70	0.85	48.3			
Appro	ach	942	2.1	0.122	0.1	NA	0.0	0.3	0.00	0.00	79.7			
South	West: Tar	lington Place												
30b	L3	1	0.0	0.001	8.2	LOS A	0.0	0.0	0.42	0.56	55.3			
32a	R1	1	0.0	0.001	5.8	LOS A	0.0	0.0	0.43	0.54	58.1			
Approach		2	0.0	0.001	7.0	LOS A	0.0	0.0	0.42	0.55	56.6			
All Vel	hicles	2195	2.2	0.217	0.1	NA	0.0	0.3	0.00	0.00	79.8			

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 15 January 2018 3:22:34 PM

Site: 4 [Great Western Highway / Tarlington Place - Tue (PM)]

Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles													
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average			
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
East: (Great We	veh/h estern Highwa	%	v/c	sec	_	veh	m	_	per veh	km/h			
4a	L1	12	, 0.0	0.499	6.1	LOS A	0.1	0.8	0.00	0.01	70.4			
4a					0.1		0.1	0.0	0.00	0.01				
5	T1	2815	4.8	0.499	0.1	LOS A	0.1	0.8	0.00	0.00	79.7			
Appro	ach	2827	4.8	0.499	0.1	NA	0.1	0.8	0.00	0.00	79.7			
West:	Great W	estern Highwa	iy											
11	T1	1288	4.6	0.170	0.0	LOS A	0.0	0.0	0.00	0.00	79.9			
12b	R3	4	0.0	0.049	16.9	LOS B	0.1	1.0	0.88	0.96	38.6			
12u	U	4	0.0	0.049	36.8	LOS C	0.1	1.0	0.88	0.96	43.1			
Appro	ach	1296	4.6	0.170	0.2	NA	0.1	1.0	0.01	0.01	79.5			
South	West: Tai	rlington Place												
30b	L3	10	0.0	0.006	8.7	LOS A	0.0	0.3	0.61	0.56	54.3			
32a	R1	4	0.0	0.008	9.4	LOS A	0.0	0.2	0.71	0.76	54.2			
Approach		14	0.0	0.008	8.9	LOS A	0.0	0.3	0.64	0.62	54.3			
All Vel	hicles	4138	4.7	0.499	0.2	NA	0.1	1.0	0.00	0.01	79.5			

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 29 January 2018 2:32:33 PM

Project: P:\N14000-14099\N140040 St. Bartholomew's Cemetery, Prospect\Modelling\180205-N140040 St. Bartholomews Cemetery Prospect Future Conditions with Dev & roadworks.sip7

V Site: 1 [Prospect Highway / Ponds Road - Sat (noon)]

Giveway / Yield (Two-Way)

Move	ement	Performa	nce - V	/ehicle	s								
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles		Prop. Queued	Effective A Stop S Rate	0
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Prosp	ect Highwa	у										
2	T1	1178	5.0	1178	5.0	0.624	0.0	LOS A	0.0	0.0	0.00	0.00	59.7
3	R2	50	4.4	50	4.4	0.178	18.5	LOS B	0.6	4.3	0.87	0.95	37.9
Appro	ach	1228	5.0	1228	5.0	0.624	0.8	NA	0.6	4.3	0.04	0.04	58.4
East:	Ponds	Road											
4	L2	212	3.6	212	3.6	1.234	248.3	LOS F	28.8	207.9	1.00	3.34	6.9
6	R2	76	1.4	76	1.4	0.590	51.0	LOS D	2.2	15.6	0.95	1.05	35.7
Appro	ach	288	3.1	288	3.1	1.234	196.1	LOS F	28.8	207.9	0.99	2.73	10.3
North	Prospe	ect Highway	y										
7	L2	93	3.6	93	3.6	0.615	5.7	LOS A	8.6	62.5	0.00	0.05	57.6
8	T1	1069	4.4	1069	4.4	0.615	0.1	LOS A	8.6	62.5	0.00	0.05	58.9
Appro	ach	1162	4.4	1162	4.4	0.615	0.6	NA	8.6	62.5	0.00	0.05	58.7
All Ve	hicles	2678	4.5	2678	4.5	1.234	21.7	NA	28.8	207.9	0.12	0.33	37.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 30.2 % Number of Iterations: 10 (maximum specified: 10)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 5 February 2018 9:28:04 PM

Site: 2 [Prospect Highway / M4 Western Motorway Eastbound - Sat (noon)]

Roundabout

Move	Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total	Flows HV	Arrival I Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed	
		veh/h		veh/h	%	v/c	sec		veh	m		per veh	km/h	
South	East: P	rospect Hig	hway											
23a	R1	904	3.7	904	3.7	0.378	8.0	LOS A	3.0	21.3	0.23	0.59	40.4	
23b	R3	147	11.3	147	11.3	0.378	10.3	LOS A	2.8	20.6	0.24	0.60	50.8	
23u	U	60	0.0	60	0.0	0.378	11.2	LOS A	2.8	20.6	0.24	0.60	39.7	
Appro	ach	1111	4.5	1111	4.5	0.378	8.5	LOS A	3.0	21.3	0.24	0.59	42.9	
North	: Prospe	ect Highway	/											
7	L2	502	3.3	496	3.3	0.950	21.5	LOS B	27.5	198.8	1.00	1.16	37.0	
7a	L1	721	4.4	712	4.5	0.950	21.4	LOS B	27.5	198.8	1.00	1.16	13.5	
9u	U	61	0.0	60	0.0	0.950	28.4	LOS B	27.5	198.8	1.00	1.16	13.5	
Appro	ach	1283	3.8	1267 ^{N1}	3.8	0.950	21.8	LOS B	27.5	198.8	1.00	1.16	27.0	
South	West: N	/I4 Western	Motor	way										
30a	L1	407	6.0	407	6.0	0.309	11.0	LOS A	1.7	12.7	0.69	0.84	61.8	
32a	R1	2	0.0	2	0.0	0.309	14.8	LOS B	1.6	12.2	0.70	0.89	59.8	
32	R2	93	19.0	93	19.0	0.309	17.1	LOS B	1.6	12.2	0.70	0.89	59.1	
Appro	ach	502	8.4	502	8.4	0.309	12.1	LOS A	1.7	12.7	0.69	0.85	61.3	
All Ve	hicles	2896	4.8	2880 ^{N1}	4.9	0.950	15.0	LOS B	27.5	198.8	0.65	0.88	37.8	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 30.2 % Number of Iterations: 10 (maximum specified: 10)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 5 February 2018 9:28:04 PM

Site: 3 [Prospect Highway / M4 Western Motorway Westbound - Sat (noon)]

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Move	Movement Performance - Vehicles Mov OD Demand Flows Arrival Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed	
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h	
South	: Prospe	ect Highwa	у											
1	L2	145	5.3	145	5.3	0.303	34.4	LOS C	5.1	37.6	0.84	0.77	38.1	
2	T1	358	4.9	358	4.9	0.592	30.7	LOS C	11.6	84.6	0.90	0.75	30.0	
Appro	ach	503	5.1	503	5.1	0.592	31.7	LOS C	11.6	84.6	0.89	0.76	33.2	
East:	M4 Wes	stern Motor	way											
4	L2	96	4.6	96	4.6	0.088	6.8	LOS A	0.6	4.5	0.23	0.61	53.1	
5	T1	6	0.0	6	0.0	0.614	34.0	LOS C	10.3	75.4	0.95	0.83	36.4	
6	R2	508	5.0	508	5.0	0.614	39.6	LOS C	10.3	75.4	0.95	0.83	26.3	
Appro	ach	610	4.9	610	4.9	0.614	34.4	LOS C	10.3	75.4	0.83	0.79	30.6	
North	Prospe	ect Highway	/											
8	T1	313	4.9	311	5.0	0.260	7.7	LOS A	5.9	43.1	0.47	0.41	51.5	
9	R2	505	5.0	502	5.0	0.600	23.2	LOS B	5.4	39.7	0.94	0.81	39.0	
Appro	ach	818	5.0	<mark>813</mark> N	¹ 5.0	0.600	17.3	LOS B	5.9	43.1	0.76	0.66	43.0	
All Ve	hicles	1931	5.0	<mark>1926</mark> N	¹ 5.0	0.614	26.5	LOS B	11.6	84.6	0.82	0.73	36.3	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 30.2 % Number of Iterations: 10 (maximum specified: 10)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Move	Novement Performance - Pedestrians														
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped							
P1S	South Slip/Bypass Lane Crossing	53	8.0	LOS A	0.1	0.1	0.42	0.42							
P4	West Full Crossing	53	28.1	LOS C	0.1	0.1	0.79	0.79							
All Pe	destrians	105	18.1	LOS B			0.61	0.61							

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 5 February 2018 9:28:04 PM

Site: 4 [Great Western Highway / Tarlington Place - Sat (noon)]

Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles Mov OD Demand Flows Deg. Average Level of 95% Back of Queue Prop. Effective Average													
Mov	OD	Demand		Deg.	Average	Level of			Prop.	Effective	Average			
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed			
East: (Great We	veh/h estern Highwa	%	v/c	sec	_	veh	m	_	per veh	km/h			
		0	,		~ 4		.				70.0			
4a	L1	19	0.0	0.231	6.1	LOS A	0.1	0.8	0.00	0.03	70.0			
5	T1	1312	2.2	0.231	0.0	LOS A	0.1	0.8	0.00	0.01	79.8			
Appro	ach	1331	2.2	0.231	0.1	NA	0.1	0.8	0.00	0.01	79.7			
West:	Great W	estern Highwa	ay											
11	T1	985	2.1	0.128	0.0	LOS A	0.0	0.0	0.00	0.00	80.0			
12b	R3	9	0.0	0.028	12.2	LOS A	0.1	0.6	0.67	0.87	49.6			
12u	U	3	0.0	0.028	19.0	LOS B	0.1	0.6	0.67	0.87	51.9			
Appro	ach	997	2.1	0.128	0.2	NA	0.1	0.6	0.01	0.01	79.5			
South	West: Tai	rlington Place												
30b	L3	18	0.0	0.020	8.3	LOS A	0.1	0.5	0.43	0.63	55.1			
32a	R1	9	0.0	0.008	6.0	LOS A	0.0	0.2	0.45	0.62	57.9			
Appro	ach	27	0.0	0.020	7.6	LOS A	0.1	0.5	0.44	0.63	56.0			
All Vel	hicles	2354	2.1	0.231	0.2	NA	0.1	0.8	0.01	0.02	79.3			

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 29 January 2018 2:32:31 PM

V Site: 1 [Prospect Highway / Ponds Road - Tue (AM)]

Giveway / Yield (Two-Way)

Move	ment l	Performa	nce - V	/ehicle	S								
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles		Prop. Queued	Effective A Stop 3 Rate	verage Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Prospe	ect Highwa	у										
2	T1	1635	9.3	1634	9.3	0.889	0.1	LOS A	0.0	0.0	0.00	0.00	58.7
3	R2	78	4.2	78	4.2	0.129	10.5	LOS A	0.5	3.5	0.69	0.87	44.2
Appro	ach	1713	9.0	1713	9.0	0.889	0.6	NA	0.5	3.5	0.03	0.04	57.8
East:	Ponds F	Road											
4	L2	307	6.8	307	6.8	1.054	94.1	LOS F	17.8	132.2	1.00	2.44	16.4
6	R2	34	22.6	34	22.6	0.157	24.0	LOS B	0.5	4.3	0.82	0.94	48.2
Appro	ach	342	8.4	342	8.4	1.054	87.0	LOS F	17.8	132.2	0.98	2.29	18.7
North:	Prospe	ect Highway	y										
7	L2	27	20.8	27	20.8	0.446	5.8	LOS A	45.1	351.7	0.00	0.02	57.1
8	T1	773	13.2	773	13.2	0.446	0.1	LOS A	45.1	351.7	0.00	0.02	59.5
Appro	ach	799	13.4	799	13.4	0.446	0.3	NA	45.1	351.7	0.00	0.02	59.4
All Ve	hicles	2854	10.2	<mark>2853</mark> N	¹ 10.2	1.054	10.9	NA	45.1	351.7	0.14	0.30	46.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 15.6 % Number of Iterations: 10 (maximum specified: 10)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 5 February 2018 9:27:17 PM

Site: 2 [Prospect Highway / M4 Western Motorway Eastbound - Tue (AM)]

Roundabout

Move	Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective / Stop Rate	Average Speed	
0 "		veh/h		veh/h	%	v/c	sec		veh	m		per veh	km/h	
		rospect Hig	, ,											
23a	R1	1075	11.0	1075	11.0	0.430	7.8	LOS A	3.9	30.1	0.07	0.60	41.5	
23b	R3	228	40.3	228	40.3	0.430	10.3	LOS A	3.7	30.6	0.07	0.61	50.3	
23u	U	29	0.0	29	0.0	0.430	10.9	LOS A	3.7	30.6	0.07	0.61	40.9	
Appro	ach	1332	15.8	1332	15.8	0.430	8.3	LOS A	3.9	30.6	0.07	0.60	44.2	
North	: Prospe	ect Highway	у											
7	L2	305	12.0	305	12.0	1.069	100.5	LOS F	25.8	198.8	1.00	2.93	15.7	
7a	L1	762	11.8	762	11.8	1.069	100.4	LOS F	25.8	198.8	1.00	2.93	3.5	
9u	U	8	0.0	8	0.0	1.069	107.1	LOS F	25.8	198.8	1.00	2.93	3.5	
Appro	ach	1074	11.7	1074	11.7	1.069	100.5	LOS F	25.8	198.8	1.00	2.93	7.6	
South	West: N	/I4 Western	Motor	way										
30a	L1	657	5.1	657	5.1	0.537	16.3	LOS B	6.2	45.3	0.98	0.81	53.1	
32a	R1	2	0.0	2	0.0	0.537	21.6	LOS B	6.0	47.7	0.96	0.89	53.3	
32	R2	240	22.6	240	22.6	0.537	24.1	LOS B	6.0	47.7	0.96	0.89	47.9	
Appro	bach	899	9.7	899	9.7	0.537	18.4	LOS B	6.2	47.7	0.98	0.83	51.6	
All Ve	hicles	3305	12.8	3305	12.8	1.069	41.0	LOS C	25.8	198.8	0.62	1.42	22.8	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 15.6 % Number of Iterations: 10 (maximum specified: 10)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 5 February 2018 9:27:17 PM

Site: 3 [Prospect Highway / M4 Western Motorway Westbound - Tues (AM)]

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Move	ement l	Performa	nce - V	/ehicle	s								
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Prosp	ect Highwa	ıy										
1	L2	214	16.0	214	16.0	0.373	29.9	LOS C	7.1	56.9	0.80	0.78	39.7
2	T1	645	15.9	645	15.9	0.884	38.5	LOS C	27.1	215.9	0.96	1.00	26.6
Appro	ach	860	15.9	860	15.9	0.884	36.4	LOS C	27.1	215.9	0.92	0.94	30.7
East:	M4 Wes	stern Motor	way										
4	L2	381	15.9	381	15.9	0.469	10.4	LOS A	6.8	53.8	0.51	0.72	50.2
5	T1	7	16.7	7	16.7	0.847	44.0	LOS D	16.1	128.0	1.00	0.96	33.1
6	R2	653	15.9	653	15.9	0.847	49.7	LOS D	16.1	128.0	1.00	0.96	23.1
Appro	ach	1041	15.9	1041	15.9	0.847	35.3	LOS C	16.1	128.0	0.82	0.87	32.5
North:	Prospe	ect Highwa	у										
8	T1	558	16.0	532	16.2	0.476	9.2	LOS A	12.2	96.9	0.57	0.51	50.1
9	R2	452	15.9	431	16.1	0.831	33.5	LOS C	6.5	51.9	1.00	0.93	33.9
Appro	ach	1010	16.0	<mark>963</mark> N	¹ 16.2	0.831	20.1	LOS B	12.2	96.9	0.76	0.70	41.3
All Ve	hicles	2911	15.9	<mark>2864</mark> N	¹ 16.2	0.884	30.5	LOS C	27.1	215.9	0.83	0.83	34.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 15.6 % Number of Iterations: 10 (maximum specified: 10)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Move	ment Performance - Pedest	rians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1S	South Slip/Bypass Lane Crossing	53	11.3	LOS B	0.1	0.1	0.50	0.50
P4	West Full Crossing	53	22.8	LOS C	0.1	0.1	0.71	0.71
All Pe	destrians	105	17.0	LOS B			0.61	0.61

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: GTA CONSULTANTS | Processed: Monday, 5 February 2018 9:27:17 PM

Site: 4 [Great Western Highway / Tarlington Place - Tue (AM)]

Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
East: (Great We	veh/h stern Highwa	% V	v/c	sec	_	veh	m	_	per veh	km/h
	L1	14	y 0.0	0.277	6.1	LOS A	0.1	0.7	0.00	0.02	70.1
4a				0.277	0.1		0.1	0.7	0.00	0.02	
5	T1	1518	8.5	0.277	0.0	LOS A	0.1	0.7	0.00	0.01	79.8
Appro	ach	1532	8.4	0.277	0.1	NA	0.1	0.7	0.00	0.01	79.7
West:	Great We	estern Highwa	ay								
11	T1	1828	4.4	0.241	0.0	LOS A	0.0	0.0	0.00	0.00	79.9
12b	R3	7	0.0	0.026	13.9	LOS A	0.1	0.5	0.75	0.91	47.5
12u	U	2	0.0	0.026	24.4	LOS B	0.1	0.5	0.75	0.91	50.3
Appro	ach	1837	4.4	0.241	0.1	NA	0.1	0.5	0.00	0.00	79.7
South	West: Tar	lington Place									
30b	L3	6	0.0	0.007	8.8	LOS A	0.0	0.2	0.47	0.63	54.5
32a	R1	3	0.0	0.003	6.4	LOS A	0.0	0.1	0.52	0.63	57.5
Appro	ach	9	0.0	0.007	7.9	LOS A	0.0	0.2	0.49	0.63	55.6
All Vel	hicles	3378	6.2	0.277	0.1	NA	0.1	0.7	0.00	0.01	79.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 29 January 2018 2:32:32 PM

V Site: 1 [Prospect Highway / Ponds Road - Tue (PM)]

Giveway / Yield (Two-Way)

Move	ment	Performa	nce - \	/ehicle	s								
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective / Stop Rate	Average Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Prosp	ect Highwa	у										
2	T1	1692	5.2	1690	5.2	0.896	0.1	LOS A	0.0	0.0	0.00	0.00	58.6
3	R2	78	7.0	78	7.1	0.124	10.1	LOS A	0.5	3.5	0.67	0.86	44.4
Appro	ach	1771	5.3	<mark>1768</mark> ^N	¹ 5.3	0.896	0.6	NA	0.5	3.5	0.03	0.04	57.8
East:	Ponds I	Road											
4	L2	354	10.0	354	10.0	1.106	129.4	LOS F	28.4	215.5	1.00	3.10	12.5
6	R2	51	2.2	51	2.2	0.160	18.0	LOS B	0.5	3.9	0.76	0.92	52.9
Appro	ach	405	9.0	405	9.0	1.106	115.4	LOS F	28.4	215.5	0.97	2.83	15.0
North:	Prospe	ect Highwa	у										
7	L2	61	5.5	61	5.5	0.427	5.7	LOS A	75.9	588.6	0.00	0.05	57.5
8	T1	705	13.2	705	13.2	0.427	0.1	LOS A	75.9	588.6	0.00	0.05	59.0
Appro	ach	766	12.6	766	12.6	0.427	0.5	NA	75.9	588.6	0.00	0.05	58.8
All Ve	hicles	2941	7.7	<mark>2938</mark> N	¹ 7.7	1.106	16.4	NA	75.9	588.6	0.15	0.42	41.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 22.5 % Number of Iterations: 10 (maximum specified: 10)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 5 February 2018 9:27:41 PM

Site: 2 [Prospect Highway / M4 Western Motorway Eastbound - Tue (PM)]

Roundabout

Move	Movement Performance - Vehicles													
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective / Stop Rate	Average Speed	
0 11		veh/h		veh/h	%	v/c	sec		veh	m		per veh	km/h	
		rospect Hig												
23a	R1	1141	4.9	1141	4.9	0.486	7.8	LOS A	3.8	27.7	0.10	0.60	41.1	
23b	R3	339	4.9	339	4.9	0.486	9.9	LOS A	3.8	27.7	0.10	0.63	51.1	
23u	U	203	0.0	203	0.0	0.486	10.9	LOS A	3.8	27.7	0.10	0.63	39.9	
Appro	ach	1683	4.3	1683	4.3	0.486	8.6	LOS A	3.8	28.0	0.10	0.61	44.5	
North:	Prospe	ect Highway	/											
7	L2	180	11.7	180	11.7	1.145	184.1	LOS F	25.9	198.8	1.00	3.96	9.8	
7a	L1	848	11.7	848	11.7	1.145	184.0	LOS F	25.9	198.8	1.00	3.96	2.0	
9u	U	21	0.0	21	0.0	1.145	190.7	LOS F	25.9	198.8	1.00	3.96	2.0	
Appro	ach	1049	11.5	1049	11.5	1.145	184.1	LOS F	25.9	198.8	1.00	3.96	3.5	
South	West: N	/I4 Western	Motor	way										
30a	L1	609	6.0	609	6.0	0.589	23.1	LOS B	8.3	61.4	1.00	0.97	44.6	
32a	R1	14	0.0	14	0.0	0.589	26.8	LOS B	8.0	67.1	1.00	0.99	49.5	
32	R2	227	37.1	227	37.1	0.589	30.4	LOS C	8.0	67.1	1.00	0.99	42.4	
Appro	ach	850	14.2	850	14.2	0.589	25.1	LOS B	8.3	67.1	1.00	0.97	44.1	
All Ve	hicles	3582	8.8	3582	8.8	1.145	63.9	LOS E	25.9	198.8	0.58	1.68	16.3	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 22.5 % Number of Iterations: 10 (maximum specified: 10)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: GTA CONSULTANTS | Processed: Monday, 5 February 2018 9:27:41 PM

Site: 3 [Prospect Highway / M4 Western Motorway Westbound - Tues (PM)]

Signals - Fixed Time Isolated Cycle Time = 90 seconds (User-Given Cycle Time)

Move	ment	Performa	nce - V	/ehicle	s								
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Prosp	ect Highwa	ıy										
1	L2	392	5.1	392	5.1	0.532	27.2	LOS B	13.0	95.2	0.81	0.81	41.1
2	T1	880	5.0	880	5.0	0.944	46.4	LOS D	43.1	314.5	0.95	1.10	23.9
Appro	ach	1272	5.0	1272	5.0	0.944	40.5	LOS C	43.1	314.5	0.90	1.01	29.8
East:	M4 We	stern Motor	rway										
4	L2	203	4.9	203	4.9	0.167	6.4	LOS A	0.9	6.8	0.19	0.60	53.4
5	T1	6	0.0	6	0.0	0.940	61.2	LOS E	16.1	117.4	1.00	1.08	28.7
6	R2	557	5.0	557	5.0	0.940	66.8	LOS E	16.1	117.4	1.00	1.08	19.0
Appro	ach	766	4.9	766	4.9	0.940	50.7	LOS D	16.1	117.4	0.79	0.95	26.1
North:	Prospe	ect Highwa	у										
8	T1	166	4.7	152	4.8	0.114	4.6	LOS A	2.1	15.5	0.35	0.29	54.6
9	R2	584	4.9	533	5.0	0.956	54.6	LOS D	11.7	85.6	1.00	1.10	27.2
Appro	ach	749	4.9	<mark>685</mark> ^N	¹ 5.0	0.956	43.5	LOS D	11.7	85.6	0.86	0.92	30.6
All Ve	hicles	2787	5.0	<mark>2723</mark> N	¹ 5.1	0.956	44.1	LOS D	43.1	314.5	0.86	0.97	28.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 22.5 % Number of Iterations: 10 (maximum specified: 10)

N1 Arrival Flow value is reduced due to capacity constraint at oversaturated upstream lanes.

Move	Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped						
P1S	South Slip/Bypass Lane Crossing	53	14.5	LOS B	0.1	0.1	0.57	0.57						
P4	West Full Crossing	53	18.7	LOS B	0.1	0.1	0.65	0.65						
All Pe	destrians	105	16.6	LOS B			0.61	0.61						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 5 February 2018 9:27:41 PM

Site: 2v [Prospect Highway / M4 Western Motorway Eastbound - Tue (AM) - Upgrade - 1.2]

Signals - Fixed Time Coordinated Cycle Time = 90 seconds (Network Cycle Time - User-Given)

Move	ement l	Performa	nce - \	/ehicle	s								
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h		veh/h	%	v/c	sec		veh	m		per veh	km/h
South	East: P	rospect Hig	ghway										
23a	R1	1194	10.7	1194	10.7	0.559	16.0	LOS B	14.2	108.3	0.58	0.74	28.9
23b	R3	245	40.3	245	40.3	0.674	52.4	LOS D	7.2	67.5	1.00	0.82	26.4
Appro	ach	1439	15.7	1439	15.7	0.674	22.2	LOS B	14.2	108.3	0.66	0.75	27.9
North	: Prospe	ect Highwa	у										
7	L2	327	11.9	327	11.9	0.268	7.4	LOS A	3.3	25.4	0.33	0.65	48.1
7a	L1	856	11.2	856	11.2	0.679	30.7	LOS C	16.1	123.7	0.91	0.84	9.6
Appro	ach	1183	11.4	1183	11.4	0.679	24.2	LOS B	16.1	123.7	0.75	0.78	21.9
West:	M4 We	stern Moto	rway										
10	L2	705	5.1	705	5.1	0.877	53.2	LOS D	17.3	126.5	0.97	0.95	26.2
11	T1	2	0.0	2	0.0	0.294	32.8	LOS C	4.6	38.3	0.84	0.78	43.4
12a	R1	257	22.5	257	22.5	0.294	36.3	LOS C	4.6	38.3	0.84	0.78	34.1
Appro	ach	964	9.7	964	9.7	0.877	48.6	LOS D	17.3	126.5	0.94	0.90	28.0
All Ve	hicles	3586	12.7	3586	12.7	0.877	30.0	LOS C	17.3	126.5	0.76	0.80	26.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 2.8 % Number of Iterations: 10 (maximum specified: 10)

Move	Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped						
P4 P4S	West Full Crossing West Slip/Bypass Lane Crossing	53 53	9.4 8.9	LOS A LOS A	0.1 0.1	0.1 0.1	0.46 0.45	0.46 0.45						
All Pe	destrians	105	9.1	LOS A			0.45	0.45						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: GTA CONSULTANTS | Processed: Monday, 5 February 2018 9:39:24 PM

Site: 3 [Prospect Highway / M4 Western Motorway Westbound - Tues (AM) - upgrade - 1.2]

Signals - Fixed Time Coordinated Cycle Time = 90 seconds (Network Cycle Time - User-Given)

Move	ement l	Performa	nce - V	/ehicle	s								
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
South	South: Prospect Highway												
1	L2	258	16.0	258	16.0	0.536	35.3	LOS C	9.7	77.3	0.89	0.81	37.5
2	T1	785	15.8	785	15.8	0.768	34.6	LOS C	16.9	134.3	0.98	0.91	28.3
Appro	ach	1043	15.8	1043	15.8	0.768	34.8	LOS C	16.9	134.3	0.95	0.88	31.3
East:	M4 Wes	stern Motor	way										
4	L2	459	15.9	459	15.9	0.515	8.0	LOS A	6.4	51.0	0.43	0.70	51.9
5	T1	8	14.3	8	14.3	0.791	35.5	LOS C	17.5	139.5	0.98	0.92	35.9
6	R2	784	15.9	784	15.9	0.791	41.3	LOS C	17.5	139.5	0.98	0.91	25.9
Appro	ach	1251	15.9	1251	15.9	0.791	29.0	LOS C	17.5	139.5	0.78	0.83	35.4
North	: Prospe	ect Highwa	y										
8	T1	713	15.0	713	15.0	0.354	6.8	LOS A	4.9	38.7	0.34	0.29	52.0
9	R2	545	16.0	545	16.0	0.774	45.3	LOS D	12.0	95.3	0.98	0.88	28.8
Appro	ach	1258	15.5	1258	15.5	0.774	23.5	LOS B	12.0	95.3	0.62	0.55	38.6
All Ve	hicles	3552	15.7	3552	15.7	0.791	28.8	LOS C	17.5	139.5	0.77	0.75	35.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 2.8 % Number of Iterations: 10 (maximum specified: 10)

Move	ment Performance - Pedest	rians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P1S	South Slip/Bypass Lane Crossing	53	8.9	LOS A	0.1	0.1	0.45	0.45
P4	West Full Crossing	53	26.5	LOS C	0.1	0.1	0.77	0.77
All Pe	destrians	105	17.7	LOS B			0.61	0.61

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 5 February 2018 9:39:24 PM

Site: 1 [Prospect Highway / Ponds Road - Tue (AM) - upgrade - 1.2]

Giveway / Yield (Two-Way)

Move	ment	Performar	nce - V	/ehicle	s								
Mov ID	OD Mov	Demand Total veh/h	ΗV	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Speed
South	: Prosp	ect Highway		VEH/H	/0	v/C	360		VCII		_		K11/11
2	T1	1876	8.8	1876	8.8	0.509	0.0	LOS A	0.0	0.0	0.00	0.00	59.8
Appro	ach	1876	8.8	1876	8.8	0.509	0.0	NA	0.0	0.0	0.00	0.00	59.8
East:	Ponds	Road											
4	L2	329	6.7	329	6.7	0.312	12.7	LOS A	1.4	10.4	0.57	0.84	60.1
Appro	ach	329	6.7	329	6.7	0.312	12.7	LOS A	1.4	10.4	0.57	0.84	60.1
North:	Prospe	ect Highway	/										
7	L2	28	22.2	28	22.2	0.017	5.8	LOS A	0.0	0.0	0.00	0.52	54.2
8	T1	860	12.7	860	12.7	0.219	0.0	LOS A	0.0	0.0	0.00	0.00	59.9
Appro	ach	888	13.0	888	13.0	0.219	0.2	NA	0.0	0.0	0.00	0.02	59.5
All Vel	hicles	3094	9.8	3094	9.8	0.509	1.4	NA	1.4	10.4	0.06	0.09	59.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 2.8 % Number of Iterations: 10 (maximum specified: 10)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Monday, 5 February 2018 9:39:24 PM Project: P:\N14000-14099\N140040 St. Bartholomew's Cemetery, Prospect\Modelling\180205-N140040 St. Bartholomews Cemetery Prospect Future Conditions with Dev & roadworks.sip7

Site: 4 [Great Western Highway / Tarlington Place - Tue (AM)]

Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
E a a fa d		veh/h	%	v/c	sec		veh	m		per veh	km/h
East		estern Highwa	,								
4a	L1	14	0.0	0.290	6.1	LOS A	0.1	0.6	0.00	0.02	70.2
5	T1	1594	8.2	0.290	0.0	LOS A	0.1	0.6	0.00	0.01	79.8
Approa	ach	1607	8.1	0.290	0.1	NA	0.1	0.6	0.00	0.01	79.7
West:	Great We	estern Highwa	ау								
11	T1	1961	4.4	0.259	0.0	LOS A	0.0	0.0	0.00	0.00	79.9
12b	R3	7	0.0	0.024	14.6	LOS B	0.1	0.5	0.74	0.91	48.6
12u	U	1	0.0	0.024	26.6	LOS B	0.1	0.5	0.74	0.91	51.1
Approa	ach	1969	4.4	0.259	0.1	NA	0.1	0.5	0.00	0.00	79.7
South	West: Tar	rlington Place									
30b	L3	5	0.0	0.007	9.0	LOS A	0.0	0.2	0.48	0.63	54.3
32a	R1	3	0.0	0.003	6.6	LOS A	0.0	0.1	0.55	0.64	57.3
Approa	ach	8	0.0	0.007	8.1	LOS A	0.0	0.2	0.51	0.64	55.4
All Vel	nicles	3585	6.0	0.290	0.1	NA	0.1	0.6	0.00	0.01	79.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Tuesday, February 6, 2018 2:25:33 PM

Site: 1 [Prospect Highway / Ponds Road - Tue (PM) - upgrade - 1.2]

Giveway / Yield (Two-Way)

Move	ment	Performar	nce - V	/ehicle	s								
Mov ID	OD Mov	Demand Total veh/h	ΗV	Arrival Total veh/h	Flows HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	Distance	Prop. Queued	Effective Stop Rate per veh	Speed
South	: Prosp	ect Highway		ven/n	70	V/C	Sec	_	ven	m	_	perven	KIII/11
2	T1 '	2141	, 4.7	2141	4.7	0.566	0.0	LOS A	0.0	0.0	0.00	0.00	59.8
Appro	ach	2141	4.7	2141	4.7	0.566	0.0	NA	0.0	0.0	0.00	0.00	59.8
East:	Ponds	Road											
4	L2	380	10.0	380	10.0	0.352	12.4	LOS A	1.7	13.2	0.54	0.80	60.7
Appro	ach	380	10.0	380	10.0	0.352	12.4	LOS A	1.7	13.2	0.54	0.80	60.7
North:	Prospe	ect Highway	/										
7	L2	64	4.9	64	4.9	0.035	5.7	LOS A	0.0	0.0	0.00	0.53	54.8
8	T1	975	10.3	975	10.3	0.171	0.0	LOS A	7.9	60.3	0.00	0.00	60.0
Appro	ach	1039	9.9	1039	9.9	0.171	0.4	NA	7.9	60.3	0.00	0.03	59.3
All Ve	hicles	3560	6.8	3560	6.8	0.566	1.4	NA	7.9	60.3	0.06	0.10	59.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 3.2 % Number of Iterations: 10 (maximum specified: 10)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS Processed: Monday, 5 February 2018 9:39:57 PM Project: P:\N14000-14099\N140040 St. Bartholomew's Cemetery, Prospect\Modelling\180205-N140040 St. Bartholomews Cemetery Prospect Future Conditions with Dev & roadworks.sip7

Site: 2v [Prospect Highway / M4 Western Motorway Eastbound - Tue (PM) - Upgrade - 1.2]

Signals - Fixed Time Coordinated Cycle Time = 90 seconds (Network Cycle Time - User-Given)

Move	ment l	Performa	nce - V	/ehicle	s								
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective / Stop Rate	Average Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
South	East: P	rospect Hig	hway										
23a	R1	1464	4.1	1464	4.1	0.622	11.4	LOS A	13.1	94.8	0.44	0.68	33.9
23b	R3	364	4.9	364	4.9	0.819	51.9	LOS D	10.8	79.0	1.00	0.85	27.0
Appro	ach	1828	4.3	1828	4.3	0.819	19.5	LOS B	13.1	94.8	0.55	0.72	30.5
North:	Prospe	ect Highway	y										
7	L2	194	11.4	194	11.4	0.163	7.9	LOS A	2.1	15.9	0.33	0.64	47.6
7a	L1	1149	9.2	1149	9.2	0.823	35.6	LOS C	17.3	130.6	0.97	0.94	8.4
Appro	ach	1343	9.6	1343	9.6	0.823	31.6	LOS C	17.3	130.6	0.87	0.89	14.6
West:	M4 We	stern Moto	rway										
10	L2	654	6.0	654	6.0	0.898	58.3	LOS E	16.9	124.6	1.00	0.98	24.5
11	T1	16	0.0	16	0.0	0.361	35.9	LOS C	4.9	44.3	0.88	0.79	42.0
12a	R1	243	37.2	243	37.2	0.361	39.8	LOS C	4.9	44.3	0.88	0.79	32.4
Appro	ach	913	14.2	913	14.2	0.898	53.0	LOS D	16.9	124.6	0.97	0.92	26.5
All Ve	hicles	4084	8.2	4084	8.2	0.898	31.0	LOS C	17.3	130.6	0.75	0.82	24.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 3.2 % Number of Iterations: 10 (maximum specified: 10)

Move	ment Performance - Pedest	rians						
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped
P4 P4S	West Full Crossing West Slip/Bypass Lane Crossing	53 53	8.0 7.6	LOS A LOS A	0.1 0.1	0.1 0.1	0.42 0.41	0.42 0.41
All Pe	destrians	105	7.8	LOS A			0.42	0.42

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: GTA CONSULTANTS | Processed: Monday, 5 February 2018 9:39:57 PM

Site: 3 [Prospect Highway / M4 Western Motorway Westbound - Tues (PM) - upgrade - 1.2]

Signals - Fixed Time Coordinated Cycle Time = 90 seconds (Network Cycle Time - User-Given)

Move	ement	Performar	nce - V	/ehicle	s								
Mov ID	OD Mov	Demand Total		Arrival Total		Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective / Stop Rate	Average Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Prospe	ect Highwa	у										
1	L2	421	5.0	421	5.0	0.640	31.3	LOS C	15.4	112.7	0.89	0.84	39.3
2	T1	966	4.9	966	4.9	0.697	26.3	LOS B	18.2	132.6	0.91	0.80	32.4
Appro	ach	1387	4.9	1387	4.9	0.697	27.8	LOS B	18.2	132.6	0.90	0.81	35.3
East:	M4 Wes	stern Motor	way										
4	L2	218	4.8	218	4.8	0.203	6.3	LOS A	0.9	6.8	0.18	0.60	53.4
5	T1	5	0.0	5	0.0	0.889	50.6	LOS D	15.6	113.9	1.00	1.01	31.3
6	R2	598	4.9	598	4.9	0.889	56.2	LOS D	15.6	113.9	1.00	1.01	21.4
Appro	ach	821	4.9	821	4.9	0.889	42.9	LOS D	15.6	113.9	0.78	0.90	28.6
North	Prospe	ect Highway	/										
8	T1	418	2.0	418	2.0	0.160	2.3	LOS A	1.2	8.9	0.14	0.12	57.1
9	R2	626	5.0	626	5.0	0.715	40.8	LOS C	13.2	96.3	0.97	0.86	30.4
Appro	ach	1044	3.8	1044	3.8	0.715	25.4	LOS B	13.2	96.3	0.64	0.57	37.4
All Ve	hicles	3253	4.6	3253	4.6	0.889	30.8	LOS C	18.2	132.6	0.79	0.76	34.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 3.2 % Number of Iterations: 10 (maximum specified: 10)

Move	Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped						
P1S	South Slip/Bypass Lane Crossing	53	12.3	LOS B	0.1	0.1	0.52	0.52						
P4	West Full Crossing	53	21.4	LOS C	0.1	0.1	0.69	0.69						
All Pe	destrians	105	16.9	LOS B			0.61	0.61						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: GTA CONSULTANTS | Processed: Monday, 5 February 2018 9:39:57 PM

Site: 4 [Great Western Highway / Tarlington Place - Tue (PM)]

Giveway / Yield (Two-Way)

Move	ment Pe	erformance	- Vehic	les							
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
East: (Great We	veh/h estern Highwa	%	v/c	sec	_	veh	m	_	per veh	km/h
		0	,	0.500	0.4		0.4	0.0	0.00	0.04	70.4
4a	L1	12	0.0	0.526	6.1	LOS A	0.1	0.8	0.00	0.01	70.4
5	T1	2971	4.8	0.526	0.1	LOS A	0.1	0.8	0.00	0.00	79.7
Appro	ach	2982	4.8	0.526	0.1	NA	0.1	0.8	0.00	0.00	79.7
West:	Great W	estern Highwa	ау								
11	T1	1382	4.6	0.183	0.0	LOS A	0.0	0.0	0.00	0.00	79.9
12b	R3	4	0.0	0.023	18.5	LOS B	0.1	0.5	0.86	0.95	42.4
12u	U	1	0.0	0.023	41.9	LOS C	0.1	0.5	0.86	0.95	46.3
Appro	ach	1387	4.6	0.183	0.1	NA	0.1	0.5	0.00	0.00	79.7
South	West: Tai	rlington Place									
30b	L3	9	0.0	0.006	8.9	LOS A	0.0	0.3	0.64	0.57	54.2
32a	R1	4	0.0	0.008	10.0	LOS A	0.0	0.2	0.74	0.79	53.5
Appro	ach	14	0.0	0.008	9.2	LOS A	0.0	0.3	0.67	0.63	54.0
All Vel	hicles	4383	4.7	0.526	0.1	NA	0.1	0.8	0.00	0.00	79.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Tuesday, February 6, 2018 2:26:59 PM

Site: 2v [Prospect Highway / M4 Western Motorway Eastbound - Sat (noon) - Upgrade - 1.2]

Signals - Fixed Time Coordinated Cycle Time = 90 seconds (Network Cycle Time - User-Given)

Move	Movement Performance - Vehicles												
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective / Stop Rate	Average Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
South	East: P	rospect Hig	ghway										
23a	R1	1099	3.3	1099	3.3	0.401	8.8	LOS A	7.3	52.4	0.33	0.63	37.6
23b	R3	158	11.3	158	11.3	0.454	50.9	LOS D	4.5	34.6	1.00	0.78	27.2
Appro	ach	1257	4.3	1257	4.3	0.454	14.1	LOS A	7.3	52.4	0.41	0.65	33.7
North	Prospe	ect Highway	у										
7	L2	539	3.3	539	3.3	0.379	6.6	LOS A	4.4	31.8	0.30	0.64	49.4
7a	L1	902	3.9	902	3.9	0.464	18.4	LOS B	12.4	89.8	0.68	0.75	14.4
Appro	ach	1441	3.7	1441	3.7	0.464	14.0	LOS A	12.4	89.8	0.53	0.71	32.6
West:	M4 We	stern Moto	rway										
10	L2	437	6.0	437	6.0	0.920	66.3	LOS E	11.9	87.5	1.00	1.00	22.2
11	T1	2	0.0	2	0.0	0.226	43.0	LOS D	2.1	16.9	0.93	0.75	38.7
12a	R1	100	18.9	100	18.9	0.226	46.5	LOS D	2.1	16.9	0.93	0.75	28.7
Appro	ach	539	8.4	539	8.4	0.920	62.5	LOS E	11.9	87.5	0.99	0.95	23.2
All Ve	hicles	3237	4.7	3237	4.7	0.920	22.1	LOS B	12.4	89.8	0.56	0.73	29.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 1.0 % Number of Iterations: 6 (maximum specified: 10)

Move	Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped						
P4 P4S	West Full Crossing West Slip/Bypass Lane Crossing	53 53	4.7 4.4	LOS A LOS A	0.0 0.0	0.0 0.0	0.32 0.31	0.32 0.31						
All Pe	destrians	105	4.5	LOS A			0.32	0.32						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: GTA CONSULTANTS | Processed: Monday, 5 February 2018 9:40:19 PM

Site: 3 [Prospect Highway / M4 Western Motorway Westbound - Sat (noon) - upgrade - 1.2]

Signals - Fixed Time Coordinated Cycle Time = 90 seconds (Network Cycle Time - User-Given)

Move	Movement Performance - Vehicles												
Mov ID	OD Mov	Demand Total	Flows HV	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective / Stop Rate	Average Speed
		veh/h	%	veh/h	%	v/c	sec		veh	m		per veh	km/h
South	: Prosp	ect Highwa	y										
1	L2	155	4.8	155	4.8	0.310	33.6	LOS C	5.4	39.6	0.83	0.77	38.4
2	T1	449	4.2	449	4.2	0.426	29.0	LOS C	8.2	59.3	0.87	0.72	30.9
Appro	ach	604	4.4	604	4.4	0.426	30.2	LOS C	8.2	59.3	0.86	0.74	33.6
East:	M4 We	stern Motor	way										
4	L2	103	5.1	103	5.1	0.101	6.2	LOS A	0.4	2.8	0.17	0.59	53.5
5	T1	5	0.0	5	0.0	0.920	56.7	LOS E	15.1	110.0	1.00	1.06	29.7
6	R2	545	5.0	545	5.0	0.920	62.3	LOS E	15.1	110.0	1.00	1.06	20.0
Appro	ach	654	5.0	654	5.0	0.920	53.4	LOS D	15.1	110.0	0.87	0.98	24.2
North	Prospe	ect Highway	/										
8	T1	465	3.6	465	3.6	0.174	1.4	LOS A	0.9	6.7	0.10	0.08	58.1
9	R2	542	5.0	542	5.0	0.425	29.4	LOS C	9.1	66.4	0.81	0.80	35.0
Appro	ach	1007	4.4	1007	4.4	0.425	16.5	LOS B	9.1	66.4	0.48	0.47	42.9
All Ve	hicles	2265	4.6	2265	4.6	0.920	30.8	LOS C	15.1	110.0	0.69	0.69	33.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 1.0 % Number of Iterations: 6 (maximum specified: 10)

Move	Movement Performance - Pedestrians													
Mov ID	Description	Demand Flow ped/h	Average Delay sec		Average Back Pedestrian ped	of Queue Distance m	Prop. Queued	Effective Stop Rate per ped						
P1S	South Slip/Bypass Lane Crossing	53	8.5	LOS A	0.1	0.1	0.43	0.43						
P4	West Full Crossing	53	27.3	LOS C	0.1	0.1	0.78	0.78						
All Pe	destrians	105	17.9	LOS B			0.61	0.61						

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement.

Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Organisation: GTA CONSULTANTS | Processed: Monday, 5 February 2018 9:40:19 PM

Site: 1 [Prospect Highway / Ponds Road - Sat (noon) - upgrade - 1.2]

Giveway / Yield (Two-Way)

Move	ment	Performan	ce - V	/ehicle	s								
Mov ID	OD Mov	Demand F Total	ΗV	Arrival Total	Flows HV %	Deg. Satn	Average Delay	Level of Service		Distance	Prop. Queued	Rate	Speed
South	veh/h % veh/h % v/c sec veh m per veh km/h South: Prospect Highway												
2	T1	1445	4.5	1445	4.5	0.381	0.0	LOS A	0.0	0.0	0.00	0.00	59.9
Appro	ach	1445	4.5	1445	4.5	0.381	0.0	NA	0.0	0.0	0.00	0.00	59.9
East:	Ponds I	Road											
4	L2	227	3.7	227	3.7	0.216	13.3	LOS A	0.8	6.0	0.58	0.82	58.7
Appro	ach	227	3.7	227	3.7	0.216	13.3	LOS A	0.8	6.0	0.58	0.82	58.7
North:	Prospe	ect Highway											
7	L2	99	3.2	99	3.2	0.053	5.6	LOS A	0.0	0.0	0.00	0.53	54.8
8	T1	1211	4.2	1211	4.2	0.229	0.0	LOS A	0.0	0.0	0.00	0.00	59.9
Appro	ach	1309	4.1	1309	4.1	0.229	0.5	NA	0.0	0.0	0.00	0.04	59.2
All Vel	hicles	2982	4.3	2982	4.3	0.381	1.2	NA	0.8	6.0	0.04	0.08	59.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Network tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Largest change in Average Back of Queue or Degree of Saturation for any lane during the last three iterations: 1.0 % Number of Iterations: 6 (maximum specified: 10)

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS Processed: Monday, 5 February 2018 9:40:19 PM Project: P:\N14000-14099\N140040 St. Bartholomew's Cemetery, Prospect\Modelling\180205-N140040 St. Bartholomews Cemetery Prospect Future Conditions with Dev & roadworks.sip7

Site: 4 [Great Western Highway / Tarlington Place - Sat (noon)]

Giveway / Yield (Two-Way)

Move	Movement Performance - Vehicles												
Mov	OD	Demand		Deg.	Average	Level of	95% Back		Prop.	Effective	Average		
ID	Mov	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed		
East: (Great We	veh/h stern Highwa	% V	v/c	sec	_	veh	m	_	per veh	km/h		
	L1	18	y 0.0	0.025	6.1	LOS A	0.1	0.8	0.00	0.02	70.0		
4a				0.235	0.1		0.1	0.0	0.00	0.02	70.0		
5	T1	1337	2.2	0.235	0.0	LOS A	0.1	0.8	0.00	0.01	79.8		
Appro	ach	1355	2.2	0.235	0.1	NA	0.1	0.8	0.00	0.01	79.7		
West:	Great We	estern Highwa	ay										
11	T1	1056	2.1	0.137	0.0	LOS A	0.0	0.0	0.00	0.00	80.0		
12b	R3	8	0.0	0.019	12.5	LOS A	0.1	0.4	0.65	0.84	51.5		
12u	U	1	0.0	0.019	19.6	LOS B	0.1	0.4	0.65	0.84	53.2		
Appro	ach	1065	2.1	0.137	0.1	NA	0.1	0.4	0.01	0.01	79.7		
South	West: Tar	lington Place											
30b	L3	17	0.0	0.019	8.4	LOS A	0.1	0.5	0.43	0.64	55.0		
32a	R1	8	0.0	0.008	6.0	LOS A	0.0	0.1	0.46	0.62	57.9		
Appro	ach	25	0.0	0.019	7.6	LOS A	0.1	0.5	0.44	0.63	55.9		
All Vel	hicles	2445	2.1	0.235	0.2	NA	0.1	0.8	0.01	0.01	79.4		

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 7.0 | Copyright © 2000-2017 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: GTA CONSULTANTS | Processed: Tuesday, February 6, 2018 2:27:24 PM

- A Level 2, 5 Mill Street PERTH WA 6000 PO Box 7025, Cloisters Square PERTH WA 6850 P +618 6169 1000 E perth@gta.com.au